These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28548520)
1. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. Wang X; Xiao R; Li H; Chen L Phys Rev Lett; 2017 May; 118(19):195901. PubMed ID: 28548520 [TBL] [Abstract][Full Text] [Related]
2. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. Maekawa H; Matsuo M; Takamura H; Ando M; Noda Y; Karahashi T; Orimo S J Am Chem Soc; 2009 Jan; 131(3):894-5. PubMed ID: 19119813 [TBL] [Abstract][Full Text] [Related]
3. Li-rich antiperovskite superionic conductors based on cluster ions. Fang H; Jena P Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11046-11051. PubMed ID: 28973929 [TBL] [Abstract][Full Text] [Related]
4. Li-Ion Cooperative Migration and Oxy-Sulfide Synergistic Effect in Li Zhang B; Weng M; Lin Z; Feng Y; Yang L; Wang LW; Pan F Small; 2020 Mar; 16(11):e1906374. PubMed ID: 32077623 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. Deng Y; Eames C; Fleutot B; David R; Chotard JN; Suard E; Masquelier C; Islam MS ACS Appl Mater Interfaces; 2017 Mar; 9(8):7050-7058. PubMed ID: 28128548 [TBL] [Abstract][Full Text] [Related]
6. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Zhou P; Wang J; Cheng F; Li F; Chen J Chem Commun (Camb); 2016 May; 52(36):6091-4. PubMed ID: 27068086 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage Lithium-Ion Batteries. Park D; Park H; Lee Y; Kim SO; Jung HG; Chung KY; Shim JH; Yu S ACS Appl Mater Interfaces; 2020 Aug; 12(31):34806-34814. PubMed ID: 32643369 [TBL] [Abstract][Full Text] [Related]
8. Novel Solid-State Electrolyte Na Hussain SJ; Liu J; Du PH; Nazir MA; Sun Q; Jena P ACS Appl Mater Interfaces; 2024 Mar; 16(11):14364-14370. PubMed ID: 38441873 [TBL] [Abstract][Full Text] [Related]
9. Experimental Corroboration of Lithium Orthothioborate Superionic Conductor by Systematic Elemental Manipulation. Zhu X; Lu P; Wu D; Gao Q; Ma T; Yang M; Chen L; Li H; Wu F Nano Lett; 2023 Nov; 23(22):10290-10296. PubMed ID: 37943577 [TBL] [Abstract][Full Text] [Related]
10. LiCrS Xu ZM; Bo SH; Zhu H ACS Appl Mater Interfaces; 2018 Oct; 10(43):36941-36953. PubMed ID: 30299927 [TBL] [Abstract][Full Text] [Related]
11. Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity. Yang S; Kim SY; Chen G ACS Energy Lett; 2024 May; 9(5):2212-2221. PubMed ID: 38751969 [TBL] [Abstract][Full Text] [Related]
12. Design principles for solid-state lithium superionic conductors. Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225 [TBL] [Abstract][Full Text] [Related]
13. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries. Song S; Duong HM; Korsunsky AM; Hu N; Lu L Sci Rep; 2016 Aug; 6():32330. PubMed ID: 27572915 [TBL] [Abstract][Full Text] [Related]
14. A lithium superionic conductor for millimeter-thick battery electrode. Li Y; Song S; Kim H; Nomoto K; Kim H; Sun X; Hori S; Suzuki K; Matsui N; Hirayama M; Mizoguchi T; Saito T; Kamiyama T; Kanno R Science; 2023 Jul; 381(6653):50-53. PubMed ID: 37410839 [TBL] [Abstract][Full Text] [Related]
15. High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors. Muy S; Voss J; Schlem R; Koerver R; Sedlmaier SJ; Maglia F; Lamp P; Zeier WG; Shao-Horn Y iScience; 2019 Jun; 16():270-282. PubMed ID: 31203184 [TBL] [Abstract][Full Text] [Related]
16. Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations. Yang Y; Wu Q; Cui Y; Chen Y; Shi S; Wang RZ; Yan H ACS Appl Mater Interfaces; 2016 Sep; 8(38):25229-42. PubMed ID: 27588896 [TBL] [Abstract][Full Text] [Related]
17. Design principles for sodium superionic conductors. Wang S; Fu J; Liu Y; Saravanan RS; Luo J; Deng S; Sham TK; Sun X; Mo Y Nat Commun; 2023 Nov; 14(1):7615. PubMed ID: 37993459 [TBL] [Abstract][Full Text] [Related]
18. New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. Zhou L; Assoud A; Zhang Q; Wu X; Nazar LF J Am Chem Soc; 2019 Dec; 141(48):19002-19013. PubMed ID: 31642663 [TBL] [Abstract][Full Text] [Related]
19. Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. Hori S; Taminato S; Suzuki K; Hirayama M; Kato Y; Kanno R Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):727-36. PubMed ID: 26634730 [TBL] [Abstract][Full Text] [Related]
20. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. Zhu Y; He X; Mo Y ACS Appl Mater Interfaces; 2015 Oct; 7(42):23685-93. PubMed ID: 26440586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]