BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28548859)

  • 1. Separation of Oil-in-Water Emulsions Using Hydrophilic Electrospun Membranes with Anisotropic Pores.
    Panatdasirisuk W; Liao Z; Vongsetskul T; Yang S
    Langmuir; 2017 Jun; 33(23):5872-5878. PubMed ID: 28548859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation.
    Liang Y; Kim S; Kallem P; Choi H
    Chemosphere; 2019 Apr; 221():479-485. PubMed ID: 30654262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun Fibrous Membranes with Dual-Scaled Porous Structure: Super Hydrophobicity, Super Lipophilicity, Excellent Water Adhesion, and Anti-Icing for Highly Efficient Oil Adsorption/Separation.
    Zhang D; Jin XZ; Huang T; Zhang N; Qi XD; Yang JH; Zhou ZW; Wang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5073-5083. PubMed ID: 30640421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underoil Superhydrophilic Metal Felt Fabricated by Modifying Ultrathin Fumed Silica Coatings for the Separation of Water-in-Oil Emulsions.
    Chen C; Chen S; Chen L; Yu Y; Weng D; Mahmood A; Wang J; Parkin IP; Carmalt CJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27663-27671. PubMed ID: 32431148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters.
    Jiang Q; Wang Y; Xie Y; Zhou M; Gu Q; Zhong Z; Xing W
    Water Res; 2022 Jun; 216():118270. PubMed ID: 35339967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux.
    Obaid M; Mohamed HO; Yasin AS; Yassin MA; Fadali OA; Kim H; Barakat NAM
    Water Res; 2017 Oct; 123():524-535. PubMed ID: 28697483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ethylene-co-vinyl alcohol) Electrospun Nanofiber Membranes for Gravity-Driven Oil/Water Separation.
    Shah AA; Yoo Y; Park A; Cho YH; Park YI; Park H
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Biomass to Membrane": Sulfonated Kraft Lignin/PCL Superhydrophilic Electrospun Membrane for Gravity-Driven Oil-in-Water Emulsion Separation.
    Mizan MMH; Gurave PM; Rastgar M; Rahimpour A; Srivastava RK; Sadrzadeh M
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41961-41976. PubMed ID: 37624730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion.
    Bae J; Kim H; Kim KS; Choi H
    Chemosphere; 2018 Aug; 204():235-242. PubMed ID: 29660536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion.
    Liu Y; Su Y; Guan J; Cao J; Zhang R; He M; Jiang Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26546-26554. PubMed ID: 30024725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Polycaprolactone Membranes Expanded with Chitosan Granules for Cell Infiltration.
    Vieira T; Rebelo AM; Borges JP; Henriques C; Silva JC
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties.
    Hu J; Prabhakaran MP; Ding X; Ramakrishna S
    J Biomater Sci Polym Ed; 2015; 26(1):57-75. PubMed ID: 25427625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.
    Arecchi A; Mannino S; Weiss J
    J Food Sci; 2010 Aug; 75(6):N80-8. PubMed ID: 20722944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation Study on the Dynamic Behaviors of Water-in-Oil Emulsified Droplets on Coalescing Fibers.
    Chen C; Chen L; Weng D; Li X; Li Z; Wang J
    Langmuir; 2020 Dec; 36(48):14872-14880. PubMed ID: 33231080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.
    Pal P; Dadhich P; Srivas PK; Das B; Maulik D; Dhara S
    Biomater Sci; 2017 Aug; 5(9):1786-1799. PubMed ID: 28650050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Wettability of Electrospun Polyurethane/Silica Composite Membranes for Effective Separation of Water-in-Oil and Oil-in-Water Emulsions.
    Fang W; Liu L; Guo G
    Chemistry; 2017 Aug; 23(47):11253-11260. PubMed ID: 28543628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyaniline coated membranes for effective separation of oil-in-water emulsions.
    Liu M; Li J; Guo Z
    J Colloid Interface Sci; 2016 Apr; 467():261-270. PubMed ID: 26809105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Three-Dimensional Visualization of Membrane Fouling by Confocal Laser Scanning Microscopy.
    Lin YM; Song C; Rutledge GC
    ACS Appl Mater Interfaces; 2019 May; 11(18):17001-17008. PubMed ID: 31034210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Janus Membranes with Charged Carbon Nanotube Coatings for Deemulsification and Separation of Oil-in-Water Emulsions.
    An YP; Yang J; Yang HC; Wu MB; Xu ZK
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9832-9840. PubMed ID: 29488368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.