These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28549371)

  • 1. Theoretical analysis of coupled effects of microbe and root architecture on methane oxidation in vegetated landfill covers.
    Feng S; Leung AK; Ng CWW; Liu HW
    Sci Total Environ; 2017 Dec; 599-600():1954-1964. PubMed ID: 28549371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of plant radial oxygen loss on methane oxidation in landfill cover soil: A simulative study.
    Bian R; Shi W; Chai X; Sun Y
    Waste Manag; 2020 Feb; 102():56-64. PubMed ID: 31669675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency.
    Bohn S; Brunke P; Gebert J; Jager J
    Waste Manag; 2011 May; 31(5):854-63. PubMed ID: 21169005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.
    Abichou T; Kormi T; Yuan L; Johnson T; Francisco E
    Waste Manag; 2015 Feb; 36():230-40. PubMed ID: 25475118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.
    Feng S; Ng CWW; Leung AK; Liu HW
    Waste Manag; 2017 Oct; 68():355-368. PubMed ID: 28545891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters.
    Hrad M; Huber-Humer M; Wimmer B; Reichenauer TG
    Waste Manag; 2012 Dec; 32(12):2324-35. PubMed ID: 22749719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of root uptake of
    Ota M; Tanaka T
    J Environ Radioact; 2019 May; 201():5-18. PubMed ID: 30721755
    [No Abstract]   [Full Text] [Related]  

  • 8. A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers.
    Ng CW; Feng S; Liu HW
    Sci Total Environ; 2015 Mar; 508():307-19. PubMed ID: 25489976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of different plants on the gas profile of a landfill cover.
    Reichenauer TG; Watzinger A; Riesing J; Gerzabek MH
    Waste Manag; 2011 May; 31(5):843-53. PubMed ID: 20888746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.
    Yargicoglu EN; Reddy KR
    J Environ Manage; 2017 May; 193():19-31. PubMed ID: 28188986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal variability of soil gas composition in landfill covers.
    Gebert J; Rachor I; Gröngröft A; Pfeiffer EM
    Waste Manag; 2011 May; 31(5):935-45. PubMed ID: 21074982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thermal boundary condition on methane oxidation in landfill cover soil at different ambient temperatures.
    Feng S; Leung AK; Liu HW; Ng CWW; Zhan LT; Chen R
    Sci Total Environ; 2019 Nov; 692():490-502. PubMed ID: 31351291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation.
    Yao Y; Su Y; Wu Y; Liu W; He R
    J Hazard Mater; 2015; 283():871-9. PubMed ID: 25464331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations on the methane oxidation capacity of landfill soils.
    Chanton J; Abichou T; Langford C; Spokas K; Hater G; Green R; Goldsmith D; Barlaz MA
    Waste Manag; 2011 May; 31(5):914-25. PubMed ID: 20889326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions.
    Wang J; Xia FF; Bai Y; Fang CR; Shen DS; He R
    Waste Manag; 2011 May; 31(5):864-70. PubMed ID: 21324662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.
    Röwer IU; Geck C; Gebert J; Pfeiffer EM
    Waste Manag; 2011 May; 31(5):926-34. PubMed ID: 20943363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers?
    Gebert J; Röwer IU; Scharff H; Roncato CD; Cabral AR
    Waste Manag; 2011 May; 31(5):987-94. PubMed ID: 21074981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental factors influencing landfill gas biofiltration: Lab scale study on methanotrophic bacteria growth.
    Amodeo C; Sofo A; Tito MT; Scopa A; Masi S; Pascale R; Mancini IM; Caniani D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jul; 53(9):825-831. PubMed ID: 29596026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.
    Kim GW; Ho A; Kim PJ; Kim SY
    Waste Manag; 2016 Sep; 55():306-12. PubMed ID: 27067424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation model for gas diffusion and methane oxidation in landfill cover soils.
    De Visscher A; Van Cleemput O
    Waste Manag; 2003; 23(7):581-91. PubMed ID: 12957153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.