These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28549385)
1. Identification and imaging of leukemia cells using dual-aptamer-functionalized graphene oxide complex. Bahreyni A; Yazdian-Robati R; Ramezani M; Rasouli M; Alinezhad Nameghi M; Alibolandi M; Abnous K; Taghdisi SM J Biomater Appl; 2017 Jul; 32(1):74-81. PubMed ID: 28549385 [TBL] [Abstract][Full Text] [Related]
2. Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles. Danesh NM; Lavaee P; Ramezani M; Abnous K; Taghdisi SM Int J Pharm; 2015 Jul; 489(1-2):311-7. PubMed ID: 25936625 [TBL] [Abstract][Full Text] [Related]
3. Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide. Fang BY; Yao MH; Wang CY; Wang CY; Zhao YD; Chen F Colloids Surf B Biointerfaces; 2016 Apr; 140():233-238. PubMed ID: 26764106 [TBL] [Abstract][Full Text] [Related]
4. A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. Bahreyni A; Yazdian-Robati R; Hashemitabar S; Ramezani M; Ramezani P; Abnous K; Taghdisi SM Int J Pharm; 2017 Jun; 526(1-2):391-399. PubMed ID: 28495579 [TBL] [Abstract][Full Text] [Related]
5. Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. Taghdisi SM; Abnous K; Mosaffa F; Behravan J J Drug Target; 2010 May; 18(4):277-81. PubMed ID: 19943768 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Leitner M; Poturnayova A; Lamprecht C; Weich S; Snejdarkova M; Karpisova I; Hianik T; Ebner A Anal Bioanal Chem; 2017 Apr; 409(11):2767-2776. PubMed ID: 28229174 [TBL] [Abstract][Full Text] [Related]
7. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Liu Z; Chen S; Liu B; Wu J; Zhou Y; He L; Ding J; Liu J Anal Chem; 2014 Dec; 86(24):12229-35. PubMed ID: 25393607 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous probing of dual intracellular metabolites (ATP and paramylon) in live microalgae using graphene oxide/aptamer nanocomplex. Kim JY; Jin CR; Park J; Kim DG; Kim HS; Choi YE Mikrochim Acta; 2022 Feb; 189(3):88. PubMed ID: 35129697 [TBL] [Abstract][Full Text] [Related]
9. An ATP-responsive smart gate fabricated with a graphene oxide-aptamer-nanochannel architecture. Zhu X; Zhang B; Ye Z; Shi H; Shen Y; Li G Chem Commun (Camb); 2015 Jan; 51(4):640-3. PubMed ID: 25406894 [TBL] [Abstract][Full Text] [Related]
11. Semiquantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. Tan X; Chen T; Xiong X; Mao Y; Zhu G; Yasun E; Li C; Zhu Z; Tan W Anal Chem; 2012 Oct; 84(20):8622-7. PubMed ID: 22978721 [TBL] [Abstract][Full Text] [Related]
12. Label-free chemiluminescent ATP aptasensor based on graphene oxide and an instantaneous derivatization of guanine bases. Song Y; Yang X; Li Z; Zhao Y; Fan A Biosens Bioelectron; 2014 Jan; 51():232-7. PubMed ID: 23968729 [TBL] [Abstract][Full Text] [Related]
13. Targeted imaging of breast cancer cells using two different kinds of aptamers -functionalized nanoparticles. Mohammadinejad A; Taghdisi SM; Es'haghi Z; Abnous K; Mohajeri SA Eur J Pharm Sci; 2019 Jun; 134():60-68. PubMed ID: 30970280 [TBL] [Abstract][Full Text] [Related]
14. Low background signal platform for the detection of ATP: when a molecular aptamer beacon meets graphene oxide. He Y; Wang ZG; Tang HW; Pang DW Biosens Bioelectron; 2011 Nov; 29(1):76-81. PubMed ID: 21889887 [TBL] [Abstract][Full Text] [Related]
15. Two-photon imaging of aptamer-functionalized Copolymer/TPdye fluorescent organic dots targeted to cancer cells. Yan H; Ren W; Liu S; Yu Y Anal Chim Acta; 2020 Apr; 1106():199-206. PubMed ID: 32145849 [TBL] [Abstract][Full Text] [Related]
16. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Taghdisi SM; Lavaee P; Ramezani M; Abnous K Eur J Pharm Biopharm; 2011 Feb; 77(2):200-6. PubMed ID: 21168488 [TBL] [Abstract][Full Text] [Related]
17. Functionalized graphene as sensitive electrochemical label in target-dependent linkage of split aptasensor for dual detection. Feng L; Zhang Z; Ren J; Qu X Biosens Bioelectron; 2014 Dec; 62():52-8. PubMed ID: 24976151 [TBL] [Abstract][Full Text] [Related]
18. A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Bai Y; Feng F; Zhao L; Chen Z; Wang H; Duan Y Analyst; 2014 Apr; 139(8):1843-6. PubMed ID: 24608985 [TBL] [Abstract][Full Text] [Related]
19. Graphene-based aptamer logic gates and their application to multiplex detection. Wang L; Zhu J; Han L; Jin L; Zhu C; Wang E; Dong S ACS Nano; 2012 Aug; 6(8):6659-66. PubMed ID: 22823159 [TBL] [Abstract][Full Text] [Related]
20. Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays. Huang Y; Liu X; Zhang L; Hu K; Zhao S; Fang B; Chen ZF; Liang H Biosens Bioelectron; 2015 Jan; 63():178-184. PubMed ID: 25087158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]