These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28549478)

  • 1. GLADIATOR: a global approach for elucidating disease modules.
    Silberberg Y; Kupiec M; Sharan R
    Genome Med; 2017 May; 9(1):48. PubMed ID: 28549478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional module identification in protein interaction networks by interaction patterns.
    Wang Y; Qian X
    Bioinformatics; 2014 Jan; 30(1):81-93. PubMed ID: 24085567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel subgradient-based optimization algorithm for blockmodel functional module identification.
    Wang Y; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S23. PubMed ID: 23368964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional annotation of hierarchical modularity.
    Padmanabhan K; Wang K; Samatova NF
    PLoS One; 2012; 7(4):e33744. PubMed ID: 22496762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks.
    Wang P; Gao L; Hu Y; Li F
    BMC Bioinformatics; 2018 Oct; 19(1):394. PubMed ID: 30373534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.
    Jeong H; Qian X; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):395. PubMed ID: 27766938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J; Li C; Ye B; Zhong W
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data.
    Li M; Wu X; Wang J; Pan Y
    BMC Bioinformatics; 2012 May; 13():109. PubMed ID: 22621308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality.
    Szalay-Beko M; Palotai R; Szappanos B; Kovács IA; Papp B; Csermely P
    Bioinformatics; 2012 Aug; 28(16):2202-4. PubMed ID: 22718784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RFCM
    Paul S; Madhumita
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1729-1740. PubMed ID: 30990434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DiME: a scalable disease module identification algorithm with application to glioma progression.
    Liu Y; Tennant DA; Zhu Z; Heath JK; Yao X; He S
    PLoS One; 2014; 9(2):e86693. PubMed ID: 24523864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular view of amyotrophic lateral sclerosis through the lens of interaction network modules.
    Jensen KH; Stalder AK; Wernersson R; Roloff-Handschin TC; Hansen DH; Groenen PMA
    PLoS One; 2022; 17(5):e0268159. PubMed ID: 35576218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-Based Disease Module Discovery by a Novel Seed Connector Algorithm with Pathobiological Implications.
    Wang RS; Loscalzo J
    J Mol Biol; 2018 Sep; 430(18 Pt A):2939-2950. PubMed ID: 29791871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOSES: A New Approach to Integrate Interactome Topology and Functional Features for Disease Gene Prediction.
    Petti M; Farina L; Francone F; Lucidi S; Macali A; Palagi L; De Santis M
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative analysis of human protein, function and disease networks.
    Liu W; Wu A; Pellegrini M; Wang X
    Sci Rep; 2015 Sep; 5():14344. PubMed ID: 26399914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable global alignment for multiple biological networks.
    Shih YK; Parthasarathy S
    BMC Bioinformatics; 2012 Mar; 13 Suppl 3(Suppl 3):S11. PubMed ID: 22536895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.
    Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y
    Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional diversity of topological modules in human protein-protein interaction networks.
    Liu G; Wang H; Chu H; Yu J; Zhou X
    Sci Rep; 2017 Nov; 7(1):16199. PubMed ID: 29170401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.