These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2854963)

  • 1. Cooperative stimulation by sulfite and crocidolite asbestos fibres of enzyme catalyzed production of reactive oxygen species.
    Elstner EF; Schütz W; Vogl G
    Arch Toxicol; 1988; 62(6):424-7. PubMed ID: 2854963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of enzyme-catalyzed production of reactive oxygen species by suspensions of "crocidolite" asbestos fibres.
    Elstner EF; Schütz W; Vogl G
    Free Radic Res Commun; 1986; 1(6):355-9. PubMed ID: 2851503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages.
    Goodglick LA; Kane AB
    Cancer Res; 1986 Nov; 46(11):5558-66. PubMed ID: 3019528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of fibre-induced superoxide release from alveolar macrophages and induction of superoxide dismutase in the lungs of rats inhaling crocidolite.
    Mossman BT; Hansen K; Marsh JP; Brew ME; Hill S; Bergeron M; Petruska J
    IARC Sci Publ; 1989; (90):81-92. PubMed ID: 2545620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protective effect of superoxide dismutase and catalase against formation of reactive oxygen species during reduction of cyclized norepinephrine ortho-quinone by DT-diaphorase.
    Linderson Y; Baez S; Segura-Aguilar J
    Biochim Biophys Acta; 1994 Jul; 1200(2):197-204. PubMed ID: 8031841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA.
    Lund LG; Aust AE
    Carcinogenesis; 1992 Apr; 13(4):637-42. PubMed ID: 1315628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of asbestos and active oxygen species in activation and expression of ornithine decarboxylase in hamster tracheal epithelial cells.
    Marsh JP; Mossman BT
    Cancer Res; 1991 Jan; 51(1):167-73. PubMed ID: 1846307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species.
    Broaddus VC; Yang L; Scavo LM; Ernst JD; Boylan AM
    J Clin Invest; 1996 Nov; 98(9):2050-9. PubMed ID: 8903324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the causal relationship between crocidolite asbestos-induced lipid peroxidation and toxicity to macrophages.
    Goodglick LA; Pietras LA; Kane AB
    Am Rev Respir Dis; 1989 May; 139(5):1265-73. PubMed ID: 2540689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo.
    Goodglick LA; Kane AB
    Cancer Res; 1990 Aug; 50(16):5153-63. PubMed ID: 2165857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crocidolite asbestos induces apoptosis of pleural mesothelial cells: role of reactive oxygen species and poly(ADP-ribosyl) polymerase.
    Broaddus VC; Yang L; Scavo LM; Ernst JD; Boylan AM
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1147-52. PubMed ID: 9400715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase and catalase prevent the formation of reactive oxygen species during reduction of cyclized dopa ortho-quinone by DT-diaphorase.
    Baez S; Linderson Y; Segura-Aguilar J
    Chem Biol Interact; 1994 Nov; 93(2):103-16. PubMed ID: 8082230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological durability and oxidative potential of a stonewool mineral fibre compared to crocidolite asbestos fibres.
    Hippeli S; Dornisch K; Kaiser S; Dräger U; Elstner EF
    Arch Toxicol; 1997; 71(8):532-5. PubMed ID: 9248633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asbestos in the lungs of persons exposed in the USA.
    Langer AM; Nolan RP
    Monaldi Arch Chest Dis; 1998 Apr; 53(2):168-80. PubMed ID: 9689804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.
    Poser I; Rahman Q; Lohani M; Yadav S; Becker HH; Weiss DG; Schiffmann D; Dopp E
    Mutat Res; 2004 Apr; 559(1-2):19-27. PubMed ID: 15066570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of asbestos body formation by high resolution FEG-SEM after exposure of Sprague-Dawley rats to chrysotile, crocidolite, or erionite.
    Gandolfi NB; Gualtieri AF; Pollastri S; Tibaldi E; Belpoggi F
    J Hazard Mater; 2016 Apr; 306():95-104. PubMed ID: 26705886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation stimulating effects of chrysotile and crocidolite asbestos fibres on B lymphocyte cell lines.
    Ueki A; Oka T; Mochizuki Y
    Clin Exp Immunol; 1984 May; 56(2):425-30. PubMed ID: 6329565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms.
    Daghino S; Martino E; Fenoglio I; Tomatis M; Perotto S; Fubini B
    Chemistry; 2005 Sep; 11(19):5611-8. PubMed ID: 16021644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of protein kinase C, phospholipase C, and protein tyrosine kinase pathways in oxygen radical generation by asbestos-stimulated alveolar macrophage.
    Lim Y; Kim SH; Kim KA; Oh MW; Lee KH
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1325-7. PubMed ID: 9400746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of asbestos on the random migration of rabbit alveolar macrophages.
    Myrvik QN; Knox EA; Gordon M; Shirley PS
    Environ Health Perspect; 1985 May; 60():387-93. PubMed ID: 2863136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.