BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28549853)

  • 1. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach.
    Hamilton DJ; White CM; Rees CL; Wheeler DW; Ascoli GA
    J Pharm Biomed Anal; 2017 Sep; 144():269-278. PubMed ID: 28549853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap.
    Tecuatl C; Wheeler DW; Sutton N; Ascoli GA
    J Neurosci; 2021 Feb; 41(8):1665-1683. PubMed ID: 33361464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus.
    Wheeler DW; White CM; Rees CL; Komendantov AO; Hamilton DJ; Ascoli GA
    Elife; 2015 Sep; 4():. PubMed ID: 26402459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular expression profiles of morphologically defined hippocampal neuron types: Empirical evidence and relational inferences.
    White CM; Rees CL; Wheeler DW; Hamilton DJ; Ascoli GA
    Hippocampus; 2020 May; 30(5):472-487. PubMed ID: 31596053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization.
    Attili SM; Moradi K; Wheeler DW; Ascoli GA
    Eur J Neurosci; 2022 Apr; 55(7):1724-1741. PubMed ID: 35301768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and selective neurodegeneration in cell cultures from different hippocampal regions.
    Mattson MP; Kater SB
    Brain Res; 1989 Jun; 490(1):110-25. PubMed ID: 2569350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers.
    Nomura T; Fukuda T; Aika Y; Heizmann CW; Emson PC; Kobayashi T; Kosaka T
    Brain Res; 1997 Aug; 764(1-2):197-204. PubMed ID: 9295210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell numbers, distribution, shape, and regional variation throughout the murine hippocampal formation from the adult brain Allen Reference Atlas.
    Attili SM; Silva MFM; Nguyen TV; Ascoli GA
    Brain Struct Funct; 2019 Nov; 224(8):2883-2897. PubMed ID: 31444616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons.
    Mattson MP; Guthrie PB; Kater SB
    Prog Clin Biol Res; 1989; 317():333-51. PubMed ID: 2690106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties.
    Hamilton DJ; Wheeler DW; White CM; Rees CL; Komendantov AO; Bergamino M; Ascoli GA
    Brain Inform; 2017 Mar; 4(1):1-12. PubMed ID: 27747821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.
    Rees CL; Wheeler DW; Hamilton DJ; White CM; Komendantov AO; Ascoli GA
    eNeuro; 2016; 3(6):. PubMed ID: 27896314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    Elife; 2024 Feb; 12():. PubMed ID: 38345923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calretinin immunoreactivity in the monkey hippocampal formation--I. Light and electron microscopic characteristics and co-localization with other calcium-binding proteins.
    Seress L; Nitsch R; Leranth C
    Neuroscience; 1993 Aug; 55(3):775-96. PubMed ID: 8413936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus.
    Iwano T; Masuda A; Kiyonari H; Enomoto H; Matsuzaki F
    Development; 2012 Aug; 139(16):3051-62. PubMed ID: 22791897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the immunoreactivity for muscarinic acetylcholine receptors and colocalized PKC gamma in mouse hippocampus induced by spatial discrimination learning.
    Van der Zee EA; Compaan JC; Bohus B; Luiten PG
    Hippocampus; 1995; 5(4):349-62. PubMed ID: 8589798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus.
    Sloviter RS; Dichter MA; Rachinsky TL; Dean E; Goodman JH; Sollas AL; Martin DL
    J Comp Neurol; 1996 Sep; 373(4):593-618. PubMed ID: 8889946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus.
    Sakurai O; Kosaka T
    Brain Res; 2007 Dec; 1186():129-43. PubMed ID: 18005945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures.
    Bausch SB; McNamara JO
    J Neurophysiol; 2000 Dec; 84(6):2918-32. PubMed ID: 11110821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction.
    Lein ES; Callaway EM; Albright TD; Gage FH
    J Comp Neurol; 2005 Apr; 485(1):1-10. PubMed ID: 15776443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.