BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 28549864)

  • 21. Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration.
    Cai Z; Tang Y; Wei Y; Wang P; Zhang H
    Acta Biomater; 2022 Oct; 152():124-143. PubMed ID: 36055611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibrin/hyaluronic acid composite hydrogels as appropriate scaffolds for in vivo artificial cartilage implantation.
    Rampichová M; Filová E; Varga F; Lytvynets A; Prosecká E; Koláčná L; Motlík J; Nečas A; Vajner L; Uhlík J; Amler E
    ASAIO J; 2010; 56(6):563-8. PubMed ID: 20966745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration.
    Palumbo FS; Fiorica C; Di Stefano M; Pitarresi G; Gulino A; Agnello S; Giammona G
    Carbohydr Polym; 2015 May; 122():408-16. PubMed ID: 25817685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.
    Bian S; He M; Sui J; Cai H; Sun Y; Liang J; Fan Y; Zhang X
    Colloids Surf B Biointerfaces; 2016 Apr; 140():392-402. PubMed ID: 26780252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophilic gelatin and hyaluronic acid-treated PLGA scaffolds for cartilage tissue engineering.
    Chang NJ; Jhung YR; Yao CK; Yeh ML
    J Appl Biomater Funct Mater; 2013 Jun; 11(1):e45-52. PubMed ID: 22798193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology and function of ovine articular cartilage chondrocytes in 3-d hydrogel culture.
    Schagemann JC; Mrosek EH; Landers R; Kurz H; Erggelet C
    Cells Tissues Organs; 2006; 182(2):89-97. PubMed ID: 16804299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.
    Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gellan gum: a new biomaterial for cartilage tissue engineering applications.
    Oliveira JT; Martins L; Picciochi R; Malafaya PB; Sousa RA; Neves NM; Mano JF; Reis RL
    J Biomed Mater Res A; 2010 Jun; 93(3):852-63. PubMed ID: 19658177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration.
    Yu X; Zhao T; Qi Y; Luo J; Fang J; Yang X; Liu X; Xu T; Yang Q; Gou Z; Dai X
    Sci Rep; 2018 Dec; 8(1):17911. PubMed ID: 30559344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation.
    Fan C; Ling Y; Deng W; Xue J; Sun P; Wang DA
    Biomed Mater; 2019 Jul; 14(5):055006. PubMed ID: 31269472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering.
    Tan H; Gong Y; Lao L; Mao Z; Gao C
    J Mater Sci Mater Med; 2007 Oct; 18(10):1961-8. PubMed ID: 17554603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The composition of hydrogels for cartilage tissue engineering can influence glycosaminoglycan profile.
    Wang QG; Hughes N; Cartmell SH; Kuiper NJ
    Eur Cell Mater; 2010 Feb; 19():86-95. PubMed ID: 20186668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering.
    Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF
    Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation.
    Han LH; Lai JH; Yu S; Yang F
    Biomaterials; 2013 Jun; 34(17):4251-8. PubMed ID: 23489920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering.
    Jin R; Moreira Teixeira LS; Dijkstra PJ; Zhong Z; van Blitterswijk CA; Karperien M; Feijen J
    Tissue Eng Part A; 2010 Aug; 16(8):2429-40. PubMed ID: 20214454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering.
    Ko CL; Tien YC; Wang JC; Chen WC
    J Mech Behav Biomed Mater; 2012 Oct; 14():227-38. PubMed ID: 23122717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH
    J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.
    Jang J; Seol YJ; Kim HJ; Kundu J; Kim SW; Cho DW
    J Mech Behav Biomed Mater; 2014 Sep; 37():69-77. PubMed ID: 24880568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.