These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2855011)

  • 1. Potential of methylene blue to block oxygen radical generation in reperfusion injury.
    Kelner MJ; Bagnell R; Hale B; Alexander NM
    Basic Life Sci; 1988; 49():895-8. PubMed ID: 2855011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury.
    Salaris SC; Babbs CF; Voorhees WD
    Biochem Pharmacol; 1991 Jul; 42(3):499-506. PubMed ID: 1650213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylene blue competes with paraquat for reduction by flavo-enzymes resulting in decreased superoxide production in the presence of heme proteins.
    Kelner MJ; Bagnell R; Hale B; Alexander NM
    Arch Biochem Biophys; 1988 May; 262(2):422-6. PubMed ID: 2835006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Hydroxyguanidine compound 1-(3,4-dimethoxy- 2-chlorobenzylideneamino)-3-hydroxyguanidine inhibits the xanthine oxidase mediated generation of superoxide radical.
    Dambrova M; Baumane L; Kiuru A; Kalvinsh I; Wikberg JE
    Arch Biochem Biophys; 2000 May; 377(1):101-8. PubMed ID: 10775447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues.
    Beckman JS; Parks DA; Pearson JD; Marshall PA; Freeman BA
    Free Radic Biol Med; 1989; 6(6):607-15. PubMed ID: 2753392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase.
    Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR
    J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of superoxide anion and methylene blue in the reductive activation of indoleamine 2,3-dioxygenase by ascorbic acid or by xanthine oxidase-hypoxanthine.
    Sono M
    J Biol Chem; 1989 Jan; 264(3):1616-22. PubMed ID: 2536368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic comparison of reduction and intramolecular electron transfer in milk xanthine oxidase and chicken liver xanthine dehydrogenase by laser flash photolysis.
    Walker MC; Hazzard JT; Tollin G; Edmondson DE
    Biochemistry; 1991 Jun; 30(24):5912-7. PubMed ID: 2043632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase and superoxide radicals in portal triad crossclamping-induced microvascular reperfusion injury of the liver.
    Müller MJ; Vollmar B; Friedl HP; Menger MD
    Free Radic Biol Med; 1996; 21(2):189-97. PubMed ID: 8818634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Is xanthine oxidase a universal source of superoxide radicals in ischemic and reperfusion lesions?].
    Rashba IuE; Nagler LG; Vartanian LS; Oktiabr'skaia LA; Bilenko MV
    Biull Eksp Biol Med; 1990 Jun; 109(6):548-50. PubMed ID: 2168771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation into the role of hydroxyl radical in xanthine oxidase-dependent lipid peroxidation.
    Tien M; Svingen BA; Aust SD
    Arch Biochem Biophys; 1982 Jun; 216(1):142-51. PubMed ID: 6285826
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation.
    Fong KL; McCay PB; Poyer JL
    Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of free oxygen radicals in the mechanism of ischaemic-reperfusion myocardial injury.
    Barta E
    Physiol Bohemoslov; 1989; 38(5):385-8. PubMed ID: 2560551
    [No Abstract]   [Full Text] [Related]  

  • 17. Conversion of xanthine dehydrogenase into oxidase and its role in reperfusion injury.
    Nishino T; Nakanishi S; Okamoto K; Mizushima J; Hori H; Iwasaki T; Nishino T; Ichimori K; Nakazawa H
    Biochem Soc Trans; 1997 Aug; 25(3):783-6. PubMed ID: 9388545
    [No Abstract]   [Full Text] [Related]  

  • 18. Substrate inhibition of xanthine oxidase and its influence on superoxide radical production.
    Rubbo H; Radi R; Prodanov E
    Biochim Biophys Acta; 1991 Aug; 1074(3):386-91. PubMed ID: 1653611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury.
    Nishino T
    J Biochem; 1994 Jul; 116(1):1-6. PubMed ID: 7798166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts.
    Gutteridge JM
    FEBS Lett; 1982 Dec; 150(2):454-8. PubMed ID: 6297981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.