These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28550269)

  • 1. Surface protection from high energy electrons and X-ray radiation analysis in tokamak plasma.
    Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(5):777-785. PubMed ID: 28550269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. x-ray irradiation analysis based on wavelet transform in tokamak plasma.
    Ghanbari K; Ghoranneviss M; Elahi AS; Saviz S
    J Xray Sci Technol; 2014; 22(6):777-83. PubMed ID: 25408394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new perspective on synchrotron radiation applications: Runaway electrons studies using a hard x-ray detection in tokamaks.
    Ghanbari K; Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(1):15-23. PubMed ID: 27662276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.
    Agah KM; Ghoranneviss M; Elahi AS
    J Xray Sci Technol; 2015; 23(2):267-74. PubMed ID: 25882736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.
    Kafi M; Salar Elahi A; Ghoranneviss M; Ghanbari MR; Salem MK
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1227-31. PubMed ID: 27577779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Runaway electron energy measurement using hard x-ray spectroscopy in "Damavand" tokamak.
    Rasouli C; Iraji D; Farahbod AH; Akhtari K; Rasouli H; Modarresi H; Lamehi M
    Rev Sci Instrum; 2009 Jan; 80(1):013503. PubMed ID: 19191433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.
    Rasouli C; Pourshahab B; Hosseini Pooya SM; Orouji T; Rasouli H
    Rev Sci Instrum; 2014 May; 85(5):053509. PubMed ID: 24880371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hard X-ray spatial array diagnostics on Joint Texas Experimental Tokamak.
    Huang DW; Chen ZY; Luo YH; Tong RH; Yan W; Jin W; Zhuang G
    Rev Sci Instrum; 2014 Nov; 85(11):11D845. PubMed ID: 25430258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Note: measurement of the runaway electrons in the J-TEXT tokamak.
    Chen ZY; Zhang Y; Zhang XQ; Luo YH; Jin W; Li JC; Chen ZP; Wang ZJ; Yang ZJ; Zhuang G
    Rev Sci Instrum; 2012 May; 83(5):056108. PubMed ID: 22667672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the nonlinear interaction of relativistic electrons and tokamak plasma instabilities: Implementation and validation of a fluid model.
    Bandaru V; Hoelzl M; Artola FJ; Papp G; Huijsmans GTA
    Phys Rev E; 2019 Jun; 99(6-1):063317. PubMed ID: 31330586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of increased radiation when an x-ray tube is placed in a strong magnetic field.
    Wen Z; Pelc NJ; Nelson WR; Fahrig R
    Med Phys; 2007 Feb; 34(2):408-18. PubMed ID: 17388157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
    Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C
    Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak.
    Savrukhin PV; Ermolaeva AI; Shestakov EA; Khramenkov AV
    Rev Sci Instrum; 2014 Oct; 85(10):103508. PubMed ID: 25362394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of runaway electrons during a disruptive termination of discharges heated with lower hybrid power in the Frascati Tokamak Upgrade.
    Martín-Solís JR; Esposito B; Sánchez R; Poli FM; Panaccione L
    Phys Rev Lett; 2006 Oct; 97(16):165002. PubMed ID: 17155404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of photo-multiplier tube as ex-vessel radiation detector in tokamak.
    Jo J; Cheon M; Kim J; An Y; Park S; Chung KJ; Hwang YS
    Rev Sci Instrum; 2017 Sep; 88(9):093503. PubMed ID: 28964183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard x-ray correlation analysis as a diagnostic tool for the measurement of magnetic turbulence in tokamaks.
    Saha SK; Hui AK; Chowdhury S; Raychaudhuri S; Banik D
    Rev Sci Instrum; 2010 Dec; 81(12):123506. PubMed ID: 21198022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks.
    James AN; Hollmann EM; Tynan GR
    Rev Sci Instrum; 2010 Oct; 81(10):10E306. PubMed ID: 21034005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of radiography applications using x-ray beams emitted by compact accelerators. Part I. Monte Carlo study of the hard x-ray spectrum.
    Marziani M; Taibi A; Di Domenico G; Gambaccini M
    Med Phys; 2009 Oct; 36(10):4683-701. PubMed ID: 19928100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU Tokamak.
    Martín-Solís JR; Sánchez R; Esposito B
    Phys Rev Lett; 2010 Oct; 105(18):185002. PubMed ID: 21231111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the external magnetic field and chemical combination on Kbeta/Kalpha X-ray intensity ratios of some nickel and cobalt compounds.
    Porikli S; Kurucu Y
    Appl Radiat Isot; 2008 Oct; 66(10):1381-6. PubMed ID: 18502648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.