BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28550296)

  • 1. Reducing mitochondrial reads in ATAC-seq using CRISPR/Cas9.
    Montefiori L; Hernandez L; Zhang Z; Gilad Y; Ober C; Crawford G; Nobrega M; Jo Sakabe N
    Sci Rep; 2017 May; 7(1):2451. PubMed ID: 28550296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M; Maher KA; Deal RB
    Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATAC-seq Assay with Low Mitochondrial DNA Contamination from Primary Human CD4+ T Lymphocytes.
    Rickner HD; Niu SY; Cheng CS
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30958473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adipocyte-Specific ATAC-Seq with Adipose Tissues Using Fluorescence-Activated Nucleus Sorting.
    Kim K; Taleb S; So J; Wann J; Cheol Roh H
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37010301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic alteration of ATAC-seq for profiling open chromatin in cryopreserved nuclei preparations from livestock tissues.
    Halstead MM; Kern C; Saelao P; Chanthavixay G; Wang Y; Delany ME; Zhou H; Ross PJ
    Sci Rep; 2020 Mar; 10(1):5230. PubMed ID: 32251359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq.
    Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data.
    Xu B; Li X; Gao X; Jia Y; Liu J; Li F; Zhang Z
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34875002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting nucleotide-specific biases in high-throughput sequencing data.
    Wang JR; Quach B; Furey TS
    BMC Bioinformatics; 2017 Aug; 18(1):357. PubMed ID: 28764645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural network based model effectively predicts enhancers from clinical ATAC-seq samples.
    Thibodeau A; Uyar A; Khetan S; Stitzel ML; Ucar D
    Sci Rep; 2018 Oct; 8(1):16048. PubMed ID: 30375457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference.
    Pranzatelli TJF; Michael DG; Chiorini JA
    BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation.
    Vandiver AR; Pielstick B; Gilpatrick T; Hoang AN; Vernon HJ; Wanagat J; Timp W
    Mitochondrion; 2022 Jul; 65():176-183. PubMed ID: 35787470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
    Ackermann AM; Wang Z; Schug J; Naji A; Kaestner KH
    Mol Metab; 2016 Mar; 5(3):233-244. PubMed ID: 26977395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AIAP: A Quality Control and Integrative Analysis Package to Improve ATAC-seq Data Analysis.
    Liu S; Li D; Lyu C; Gontarz PM; Miao B; Madden PAF; Wang T; Zhang B
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):641-651. PubMed ID: 34273560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9-based repeat depletion for high-throughput genotyping of complex plant genomes.
    Rossato M; Marcolungo L; De Antoni L; Lopatriello G; Bellucci E; Cortinovis G; Frascarelli G; Nanni L; Bitocchi E; Di Vittori V; Vincenzi L; Lucchini F; Bett KE; Ramsay L; Konkin DJ; Delledonne M; Papa R
    Genome Res; 2023 May; 33(5):787-797. PubMed ID: 37127332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq.
    Massarat AR; Sen A; Jaureguy J; Tyndale ST; Fu Y; Erikson G; McVicker G
    Nucleic Acids Res; 2021 Aug; 49(14):7986-7994. PubMed ID: 34313779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Identification of Developmentally Active Endothelial Enhancers in Zebrafish Using FANS-Assisted ATAC-Seq.
    Quillien A; Abdalla M; Yu J; Ou J; Zhu LJ; Lawson ND
    Cell Rep; 2017 Jul; 20(3):709-720. PubMed ID: 28723572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-Seq) Protocol for Zebrafish Embryos.
    Doganli C; Sandoval M; Thomas S; Hart D
    Methods Mol Biol; 2017; 1507():59-66. PubMed ID: 27832532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive evaluation of ATAC-seq protocols for native or formaldehyde-fixed nuclei.
    Zhang H; Rice ME; Alvin JW; Farrera-Gaffney D; Galligan JJ; Johnson MDL; Cusanovich DA
    BMC Genomics; 2022 Mar; 23(1):214. PubMed ID: 35296236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining signal and sequence to detect RNA polymerase initiation in ATAC-seq data.
    Tripodi IJ; Chowdhury M; Gruca M; Dowell RD
    PLoS One; 2020; 15(4):e0232332. PubMed ID: 32353042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.