BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28550413)

  • 1. Glottal Gap tracking by a continuous background modeling using inpainting.
    Andrade-Miranda G; Godino-Llorente JI
    Med Biol Eng Comput; 2017 Dec; 55(12):2123-2141. PubMed ID: 28550413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphical evaluation of vocal fold vibratory patterns by high-speed videolaryngoscopy.
    Pinheiro AP; Dajer ME; Hachiya A; Montagnoli AN; Tsuji D
    J Voice; 2014 Jan; 28(1):106-11. PubMed ID: 24275457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.
    Niebudek-Bogusz E; Kopczynski B; Strumillo P; Morawska J; Wiktorowicz J; Sliwinska-Kowalska M
    Logoped Phoniatr Vocol; 2017 Jul; 42(2):73-83. PubMed ID: 27132636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic method to detect and track the glottal gap from high speed videoendoscopic images.
    Andrade-Miranda G; Godino-Llorente JI; Moro-Velázquez L; Gómez-García JA
    Biomed Eng Online; 2015 Oct; 14():100. PubMed ID: 26510707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pediatric high speed digital imaging of vocal fold vibration: a normative pilot study of glottal closure and phase closure characteristics.
    Patel RR; Dixon A; Richmond A; Donohue KD
    Int J Pediatr Otorhinolaryngol; 2012 Jul; 76(7):954-9. PubMed ID: 22445799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between glottal area and photoglottographic signal in normal subjects.
    Habermann W; Jiang J; Lin E; Hanson DG
    Acta Otolaryngol; 2000 Sep; 120(6):778-82. PubMed ID: 11099158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving reliability and accuracy of vibration parameters of vocal folds based on high-speed video and electroglottography.
    Qin X; Wang S; Wan M
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1744-54. PubMed ID: 19272979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intersegmenter Variability in High-Speed Laryngoscopy-Based Glottal Area Waveform Measures.
    Maryn Y; Verguts M; Demarsin H; van Dinther J; Gomez P; Schlegel P; Döllinger M
    Laryngoscope; 2020 Nov; 130(11):E654-E661. PubMed ID: 31840827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J
    PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed Videolaryngoscopy: Quantitative Parameters of Glottal Area Waveforms and High-speed Kymography in Healthy Individuals.
    Tsutsumi M; Isotani S; Pimenta RA; Dajer ME; Hachiya A; Tsuji DH; Tayama N; Yokonishi H; Imagawa H; Yamauchi A; Takano S; Sakakibara KI; Montagnoli AN
    J Voice; 2017 May; 31(3):282-290. PubMed ID: 27793519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a glottal area index that integrates glottal gap size and open quotient.
    Chen G; Kreiman J; Gerratt BR; Neubauer J; Shue YL; Alwan A
    J Acoust Soc Am; 2013 Mar; 133(3):1656-66. PubMed ID: 23464035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X; Wang J; Devine EE; Wang Y; Zhong H; Courtright MR; Zhou L; Zhuang P; Jiang JJ
    J Voice; 2017 Jan; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Analytical Modeling Functions for the Phonation Onset Process.
    Petermann S; Kniesburges S; Ziethe A; Schützenberger A; Döllinger M
    Comput Math Methods Med; 2016; 2016():8469139. PubMed ID: 27066108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.