These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 28550423)
1. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423 [TBL] [Abstract][Full Text] [Related]
2. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929 [TBL] [Abstract][Full Text] [Related]
3. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Dosen S; Markovic M; Wille N; Henkel M; Koppe M; Ninu A; Frömmel C; Farina D Exp Brain Res; 2015 Jun; 233(6):1855-65. PubMed ID: 25804864 [TBL] [Abstract][Full Text] [Related]
4. Electrotactile EMG feedback improves the control of prosthesis grasping force. Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992 [TBL] [Abstract][Full Text] [Related]
5. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
6. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179 [TBL] [Abstract][Full Text] [Related]
7. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Raveh E; Portnoy S; Friedman J Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091 [TBL] [Abstract][Full Text] [Related]
8. The Interaction Between Feedback Type and Learning in Routine Grasping With Myoelectric Prostheses. Wilke MA; Hartmann C; Schimpf F; Farina D; Dosen S IEEE Trans Haptics; 2020; 13(3):645-654. PubMed ID: 31870991 [TBL] [Abstract][Full Text] [Related]
9. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161 [TBL] [Abstract][Full Text] [Related]
10. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Witteveen HJ; Rietman HS; Veltink PH Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348 [TBL] [Abstract][Full Text] [Related]
12. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. Strbac M; Isakovic M; Belic M; Popovic I; Simanic I; Farina D; Keller T; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2133-2145. PubMed ID: 28600254 [TBL] [Abstract][Full Text] [Related]
13. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625 [TBL] [Abstract][Full Text] [Related]
14. Closed-Loop Force Control by Biorealistic Hand Prosthesis With Visual and Tactile Sensory Feedback. Zhang Z; Xie A; Chou CH; Liang W; Zhang J; Bi S; Lan N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2939-2949. PubMed ID: 39110556 [TBL] [Abstract][Full Text] [Related]
15. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis. Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792 [TBL] [Abstract][Full Text] [Related]
16. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand. Chai G; Wang H; Li G; Sheng X; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165 [TBL] [Abstract][Full Text] [Related]
17. Effects of Different Tactile Feedback on Myoelectric Closed-Loop Control for Grasping Based on Electrotactile Stimulation. Xu H; Zhang D; Huegel JC; Xu W; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):827-36. PubMed ID: 26372430 [TBL] [Abstract][Full Text] [Related]
18. The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback. Tchimino J; Markovic M; Dideriksen JL; Dosen S J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34082406 [No Abstract] [Full Text] [Related]
19. A Novel Sensory Feedback Approach to Facilitate Both Predictive and Corrective Control of Grasping Force in Myoelectric Prostheses. Gasparic F; Jorgovanovic N; Hofer C; Russold MF; Koppe M; Stanisic D; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4492-4503. PubMed ID: 37930904 [TBL] [Abstract][Full Text] [Related]
20. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. Markovic M; Schweisfurth MA; Engels LF; Bentz T; Wüstefeld D; Farina D; Dosen S J Neuroeng Rehabil; 2018 Mar; 15(1):28. PubMed ID: 29580245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]