These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28550516)

  • 1. Mapping the spatio-temporal distribution of key vegetation cover properties in lowland river reaches, using digital photography.
    Verschoren V; Schoelynck J; Buis K; Visser F; Meire P; Temmerman S
    Environ Monit Assess; 2017 Jun; 189(6):294. PubMed ID: 28550516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.
    Visser F; Buis K; Verschoren V; Meire P
    Sensors (Basel); 2015 Sep; 15(10):25287-312. PubMed ID: 26437410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated (novel) algorithm for estimating green vegetation cover fraction from digital image: UIP-MGMEP.
    Hu JB; Dai MX; Peng ST
    Environ Monit Assess; 2018 Oct; 190(11):687. PubMed ID: 30377808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of vegetation degradation on Swedish mountainous heaths at an early stage by image interpretation.
    Allard A
    Ambio; 2003 Dec; 32(8):510-9. PubMed ID: 15049347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation mapping for change detection on an arid-zone river.
    Nagler P; Glenn EP; Hursh K; Curtis C; Huete A
    Environ Monit Assess; 2005 Oct; 109(1-3):255-74. PubMed ID: 16240202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submerged macrophyte assessment in rivers: An automatic mapping method using Pléiades imagery.
    Espel D; Courty S; Auda Y; Sheeren D; Elger A
    Water Res; 2020 Nov; 186():116353. PubMed ID: 32919140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal dynamics of macrophyte cover in a large regulated river.
    Tena A; Vericat D; Gonzalo LE; Batalla RJ
    J Environ Manage; 2017 Nov; 202(Pt 2):379-391. PubMed ID: 27890476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Retrieving eco-environment factors relevant to Oncomelania snail distribution based on QuickBird image].
    Huang QN; Tang LL; Jiang XG; Chen Z; Zhou XN
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2007 Aug; 25(4):304-9. PubMed ID: 18038801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in aquatic vegetation and floodplain land cover in the Upper Mississippi and Illinois rivers (1989-2000-2010).
    De Jager NR; Rohweder JJ
    Environ Monit Assess; 2017 Feb; 189(2):77. PubMed ID: 28120204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spatial-temporal process and characteristics of vegetation recovery after Wenchuan earthquake: A case study in Longxi River basin of Dujiangyan, China.].
    Li JZ; Cao MM; Qiu HJ; Xue B; Hu S; Cui P
    Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3479-3486. PubMed ID: 29696844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting vegetation cover change on the summit of Cadillac Mountain using multi-temporal remote sensing datasets: 1979, 2001, and 2007.
    Kim MK; Daigle JJ
    Environ Monit Assess; 2011 Sep; 180(1-4):63-75. PubMed ID: 21082342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invasive riparian vegetation response to flow regimes and flood pulses in a braided river floodplain.
    Caruso BS; Pithie C; Edmondson L
    J Environ Manage; 2013 Aug; 125():156-68. PubMed ID: 23660536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of water consumption for ecosystems based on Vegetation Interfaces Processes Model: A case study of the Aksu River Basin, Northwest China.
    Yang P; Xia J; Zhan C; Mo X; Chen X; Hu S; Chen J
    Sci Total Environ; 2018 Feb; 613-614():186-195. PubMed ID: 28915455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vegetation and carbon sequestration and their relation to water resources in an inland river basin of Northwest China.
    Kang E; Lu L; Xu Z
    J Environ Manage; 2007 Nov; 85(3):702-10. PubMed ID: 17126989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Spatial and temporal variations of vegetation coverage in the middle section of Yellow River Basin based on terrain gradient:Taking Yan'an City as an example.].
    Han L; Huo H; Liu Z; Zhao YH; Zhu HL; Chen R; Zhao ZL
    Ying Yong Sheng Tai Xue Bao; 2021 May; 32(5):1581-1592. PubMed ID: 34042352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of river damming on vegetation: is it always unfavourable? A case study from the River Tiber (Italy).
    Ceschin S; Tombolini I; Abati S; Zuccarello V
    Environ Monit Assess; 2015 May; 187(5):301. PubMed ID: 25920677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.