BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28550708)

  • 1. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype.
    Hardy LA; Hutchens TC; Larson ER; Gonzalez DA; Chang CH; Nau WH; Fried NM
    J Biomed Opt; 2017 May; 22(5):58002. PubMed ID: 28550708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser.
    Giglio NC; Hutchens TC; Perkins WC; Latimer C; Ward A; Nau WH; Fried NM
    J Biomed Opt; 2014 Mar; 19(3):38002. PubMed ID: 24658792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared laser sealing of porcine vascular tissues using a 1,470 nm diode laser: Preliminary in vivo studies.
    Cilip CM; Kerr D; Latimer CA; Rosenbury SB; Giglio NC; Hutchens TC; Nau WH; Fried NM
    Lasers Surg Med; 2017 Apr; 49(4):366-371. PubMed ID: 27785787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous sealing and bisection of porcine renal blood vessels, ex vivo, using a continuous-wave, infrared diode laser at 1470 nm.
    Saeed WM; Yoshino JK; Traynham AJ; Fried NM
    Lasers Med Sci; 2024 Jun; 39(1):161. PubMed ID: 38907065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.
    Cilip CM; Rosenbury SB; Giglio N; Hutchens TC; Schweinsberger GR; Kerr D; Latimer C; Nau WH; Fried NM
    J Biomed Opt; 2013 May; 18(5):58001. PubMed ID: 23640080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of quartz and sapphire optical chambers for infrared laser sealing of vascular tissues using a reciprocating, side-firing optical fiber: Simulations and experiments.
    Saeed WM; O'Brien PJ; Yoshino J; Restelli AR; Traynham AJ; Fried NM
    Lasers Surg Med; 2023 Dec; 55(10):886-899. PubMed ID: 38009367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PlasmaKinetic bipolar vessel sealing: burst pressures and thermal spread in an animal model.
    Pietrow PK; Weizer AZ; L'Esperance JO; Auge BK; Silverstein A; Cummings T; Preminger GM; Albala DM
    J Endourol; 2005; 19(1):107-10. PubMed ID: 15735394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a Laparoscopic Ferromagnetic Technology-based Vessel Sealing Device and Comparative Study to Ultrasonic and Bipolar Laparoscopic Devices.
    Chen J; Jensen CR; Manwaring PK; Glasgow RE
    Surg Laparosc Endosc Percutan Tech; 2017 Apr; 27(2):e12-e17. PubMed ID: 28234706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Coherence Tomography Feedback System for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11948():. PubMed ID: 35950053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fiber-optic linear beam shaping designs for laparoscopic laser sealing of vascular tissues.
    Giglio NC; Grose HM; Fried NM
    Opt Eng; 2022 Feb; 61(2):. PubMed ID: 36711441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocating Side-Firing Fiber for Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35965612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sealing and Bisection of Blood Vessels using a 1470 nm Laser: Optical, Thermal, and Tissue Damage Simulations.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2021 Mar; 11621():. PubMed ID: 34305258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a novel efficacy score to compare sealing and cutting devices in a porcine model.
    Brecht L; Wallwiener M; Schott S; Domschke C; Dinkic C; Golatta M; Schuetz F; Fluhr H; Stenzinger A; Kirchner M; Sohn C; Rom J
    Surg Endosc; 2018 Feb; 32(2):1002-1011. PubMed ID: 28840380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Simulations for Infrared Laser Sealing and Cutting of Blood Vessels.
    Giglio NC; Fried NM
    IEEE J Sel Top Quantum Electron; 2021; 27(4):1-8. PubMed ID: 33746498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.
    Timm RW; Asher RM; Tellio KR; Welling AL; Clymer JW; Amaral JF
    Med Devices (Auckl); 2014; 7():263-71. PubMed ID: 25114600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental comparison of mesenteric vessel sealing and thermal damage between one bipolar and two ultrasonic shears devices.
    Noble EJ; Smart NJ; Challand C; Sleigh K; Oriolowo A; Hosie KB
    Br J Surg; 2011 Jun; 98(6):797-800. PubMed ID: 21442611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive optical feedback systems for use during infrared laser sealing of blood vessels.
    Giglio NC; Fried NM
    Lasers Surg Med; 2022 Aug; 54(6):875-882. PubMed ID: 35391495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel multifunctional robotically assisted bipolar instrument for simultaneous radiofrequency sealing and transection: preclinical and single-center experience.
    Ibanez Jimenez C; Lath A; Ringold F
    BMC Surg; 2022 Feb; 22(1):37. PubMed ID: 35109833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small-, medium-, and large-sized arteries.
    Harold KL; Pollinger H; Matthews BD; Kercher KW; Sing RF; Heniford BT
    Surg Endosc; 2003 Aug; 17(8):1228-30. PubMed ID: 12799888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Optical Linear Beam Shaping Designs for use in Laparoscopic Laser Sealing of Vascular Tissues
    Hutchens TC; Giglio NC; Cilip CM; Rosenbury SG; Hardy LA; Kerr DE; Nau WH; Fried NM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5049-5052. PubMed ID: 33019121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.