BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28550748)

  • 1. Mineral-mineral particle collisions during flotation remove adsorbed nanoparticle flotation collectors.
    Dong X; Price M; Dai Z; Xu M; Pelton R
    J Colloid Interface Sci; 2017 Oct; 504():178-185. PubMed ID: 28550748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle flotation collectors: mechanisms behind a new technology.
    Yang S; Pelton R; Raegen A; Montgomery M; Dalnoki-Veress K
    Langmuir; 2011 Sep; 27(17):10438-46. PubMed ID: 21790133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle flotation collectors III: the role of nanoparticle diameter.
    Yang S; Pelton R; Montgomery M; Cui Y
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4882-90. PubMed ID: 22871900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choosing mineral flotation collectors from large nanoparticle libraries.
    Abarca C; Ali MM; Pelton RH
    J Colloid Interface Sci; 2018 Apr; 516():423-430. PubMed ID: 29408132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle flotation collectors--the influence of particle softness.
    Yang S; Razavizadeh BB; Pelton R; Bruin G
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4836-42. PubMed ID: 23692163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards high throughput screening of nanoparticle flotation collectors.
    Abarca C; Yang S; Pelton RH
    J Colloid Interface Sci; 2015 Dec; 460():97-104. PubMed ID: 26319325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.
    Yang S; Pelton R
    Langmuir; 2011 Sep; 27(18):11409-15. PubMed ID: 21830818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some physicochemical aspects of water-soluble mineral flotation.
    Wu Z; Wang X; Liu H; Zhang H; Miller JD
    Adv Colloid Interface Sci; 2016 Sep; 235():190-200. PubMed ID: 27346329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular design of flotation collectors: A recent progress.
    Liu G; Yang X; Zhong H
    Adv Colloid Interface Sci; 2017 Aug; 246():181-195. PubMed ID: 28532662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organosolv lignin hydrophobic micro- and nanoparticles as a low-carbon footprint biodegradable flotation collector in mineral flotation.
    Hrůzová K; Matsakas L; Sand A; Rova U; Christakopoulos P
    Bioresour Technol; 2020 Jun; 306():123235. PubMed ID: 32229063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Simulation Study on the Interactions of Mixed Cationic/Anionic Collectors on Muscovite (001) Surface in Aqueous Solution.
    Di Y; Jiang A; Huang H; Deng L; Zhang D; Deng W; Wang R; Luo Q; Chen S
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of depletion interactions on transport of colloidal particles in porous media.
    Weroński P; Walz JY; Elimelech M
    J Colloid Interface Sci; 2003 Jun; 262(2):372-83. PubMed ID: 16256617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flotation of Smithsonite From Quartz Using Pyrophyllite Nanoparticles as the Natural Non-toxic Collector.
    Pan G; Zou D; Wang Z
    Front Chem; 2021; 9():743482. PubMed ID: 34722456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of partially replacing amine collectors by a commercial frother in a reverse cationic hematite flotation.
    Kapiamba KF; Kimpiab M
    Heliyon; 2021 Mar; 7(3):e06559. PubMed ID: 33855236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of three typical sulfide mineral flotation collectors on soil microbial activity.
    Guo Z; Yao J; Wang F; Yuan Z; Bararunyeretse P; Zhao Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7425-36. PubMed ID: 26695417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Adsorption of Mixed Anionic/Cationic Collectors in a Spodumene-Feldspar Flotation System: Implications for Collector Design.
    Shu K; Xu L; Wu H; Xu Y; Luo L; Yang J; Tang Z; Wang Z
    Langmuir; 2020 Jul; 36(28):8086-8099. PubMed ID: 32559106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of plastics by froth flotation. The role of size, shape and density of the particles.
    Pita F; Castilho A
    Waste Manag; 2017 Feb; 60():91-99. PubMed ID: 27478025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation.
    Inkyo M; Tahara T; Iwaki T; Iskandar F; Hogan CJ; Okuyama K
    J Colloid Interface Sci; 2006 Dec; 304(2):535-40. PubMed ID: 17022990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Adhesion between Fatty Acid Collectors and Hydrophilic Surfaces: Implications for Low-Rank Coal Flotation.
    Xia Y; Fang D; Qu P; Li Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Polystyrene Nanoparticles as Collectors in the Flotation of Chalcopyrite.
    Murga R; Rodriguez C; Amalraj J; Vega-Garcia D; Gutierrez L; Uribe L
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.