These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28550784)

  • 1. High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils.
    Min X; Wang Y; Chai L; Yang Z; Liao Q
    Chemosphere; 2017 Sep; 183():266-276. PubMed ID: 28550784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT
    Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR).
    Chrysochoou M; Fakra SC; Marcus MA; Moon DH; Dermatas D
    Environ Sci Technol; 2009 Jul; 43(14):5461-6. PubMed ID: 19708382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).
    Elzinga EJ; Cirmo A
    J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing.
    Guo H; Nasir M; Lv J; Dai Y; Gao J
    Ecotoxicol Environ Saf; 2017 Oct; 144():300-306. PubMed ID: 28645031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities.
    Liu J; He XX; Lin XR; Chen WC; Zhou QX; Shu WS; Huang LN
    Environ Sci Technol; 2015 Jun; 49(11):6438-47. PubMed ID: 25919421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil.
    Huang M; Ding G; Yan X; Rao P; Wang X; Meng X; Shi Q
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites.
    Matern K; Kletti H; Mansfeldt T
    Chemosphere; 2016 Jul; 155():188-195. PubMed ID: 27111471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.
    Matern K; Weigand H; Singh A; Mansfeldt T
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3582-3592. PubMed ID: 27882493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels.
    Horowitz SB; Finley BL
    J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical distribution of microbial communities in chromium-contaminated soil and isolation of Cr(Ⅵ)-Reducing strains.
    Liu B; Su G; Yang Y; Yao Y; Huang Y; Hu L; Zhong H; He Z
    Ecotoxicol Environ Saf; 2019 Sep; 180():242-251. PubMed ID: 31100590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG
    Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.
    Jagupilla SC; Wazne M; Moon DH
    Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.
    Sheik CS; Mitchell TW; Rizvi FZ; Rehman Y; Faisal M; Hasnain S; McInerney MJ; Krumholz LR
    PLoS One; 2012; 7(6):e40059. PubMed ID: 22768219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria.
    He Z; Hu Y; Yin Z; Hu Y; Zhong H
    Environ Manage; 2016 Jun; 57(6):1319-28. PubMed ID: 26894618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an accurate soil suspension/dispersion modeling method for use in estimating health-based soil cleanup levels of hexavalent chromium in chromite ore processing residues.
    Scott PK; Finley BL; Sung HM; Schulze RH; Turner DB
    J Air Waste Manag Assoc; 1997 Jul; 47(7):753-65. PubMed ID: 9248367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of Cr(VI)-contaminated soil mixed with chromite ore processing residue by ferrous sulfate and enzyme residue.
    Shi K; Zhang Y; Ding G; Wang X; Yan X; Pan H; Zhao Y
    Sci Total Environ; 2023 Sep; 892():164743. PubMed ID: 37302601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites.
    Farmer JG; Paterson E; Bewley RJ; Geelhoed JS; Hillier S; Meeussen JC; Lumsdon DG; Thomas RP; Graham MC
    Sci Total Environ; 2006 May; 360(1-3):90-7. PubMed ID: 16203026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing chromite ore processing residue (COPR) waste dump site using electrical resistivity tomography (ERT): a case study from Umaran, Kanpur, India.
    Mishra U; Chandroth A; Basantaray AK; Chel S; Mandal A
    Environ Monit Assess; 2019 Jul; 191(8):504. PubMed ID: 31338610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Background air concentrations of Cr(VI) in Hudson County, New Jersey: implications for setting health-based standards for Cr(VI) in soil.
    Scott PK; Finley BL; Harris MA; Rabbe DE
    J Air Waste Manag Assoc; 1997 May; 47(5):592-600. PubMed ID: 9155248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.