These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 28550784)
21. Vertical distribution of microbial communities in soils contaminated by chromium and perfluoroalkyl substances. Li B; Bao Y; Xu Y; Xie S; Huang J Sci Total Environ; 2017 Dec; 599-600():156-164. PubMed ID: 28475909 [TBL] [Abstract][Full Text] [Related]
22. Vertical migration in the soil of Cr(VI) and chromite ore processing residue: Field sampling and benchtop simulation. Wang X; Liu Y; Liu B J Hazard Mater; 2023 Sep; 458():132052. PubMed ID: 37454486 [TBL] [Abstract][Full Text] [Related]
23. Hydrogarnet: a host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. Hillier S; Lumsdon DG; Brydson R; Paterson E Environ Sci Technol; 2007 Mar; 41(6):1921-7. PubMed ID: 17410785 [TBL] [Abstract][Full Text] [Related]
24. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. Xu R; Wang YN; Li S; Sun Y; Gao Y; Guo L; Wang H Ecotoxicol Environ Saf; 2023 Oct; 265():115522. PubMed ID: 37769582 [TBL] [Abstract][Full Text] [Related]
25. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. Whittleston RA; Stewart DI; Mortimer RJ; Tilt ZC; Brown AP; Geraki K; Burke IT J Hazard Mater; 2011 Oct; 194():15-23. PubMed ID: 21871726 [TBL] [Abstract][Full Text] [Related]
26. Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions. Sun W; Xiao E; Krumins V; Häggblom MM; Dong Y; Pu Z; Li B; Wang Q; Xiao T; Li F Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291123 [TBL] [Abstract][Full Text] [Related]
27. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Hillier S; Roe MJ; Geelhoed JS; Fraser AR; Farmer JG; Paterson E Sci Total Environ; 2003 Jun; 308(1-3):195-210. PubMed ID: 12738213 [TBL] [Abstract][Full Text] [Related]
28. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Graham MC; Farmer JG; Anderson P; Paterson E; Hillier S; Lumsdon DG; Bewley RJ Sci Total Environ; 2006 Jul; 364(1-3):32-44. PubMed ID: 16442591 [TBL] [Abstract][Full Text] [Related]
29. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe Lan Y; Zhang L; Li X; Liu W; Su X; Lin Z Sci Total Environ; 2022 Mar; 813():152637. PubMed ID: 34963612 [TBL] [Abstract][Full Text] [Related]
30. Remediation of chromite ore processing residue by pyrolysis process with sewage sludge. Zhang D; Kong H; Wu D; He S; Hu Z; Hu X Bioresour Technol; 2009 Jun; 100(11):2874-7. PubMed ID: 19217773 [TBL] [Abstract][Full Text] [Related]
31. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. Wu Z; Gao G; Wang Y Ecotoxicol Environ Saf; 2019 Sep; 180():705-714. PubMed ID: 31151067 [TBL] [Abstract][Full Text] [Related]
32. Soil suspension/dispersion modeling methods for estimating health-based soil cleanup levels of hexavalent chromium at chromite ore processing residue sites. Scott PK; Proctor D J Air Waste Manag Assoc; 2008 Mar; 58(3):384-403. PubMed ID: 18376642 [TBL] [Abstract][Full Text] [Related]
33. Metagenomes from microbial populations beneath a chromium waste tip give insight into the mechanism of Cr (VI) reduction. Stewart DI; Vasconcelos EJR; Burke IT; Baker A Sci Total Environ; 2024 Jun; 931():172507. PubMed ID: 38657818 [TBL] [Abstract][Full Text] [Related]
34. Solidification/stabilization of chromite ore processing residue via co-sintering with hazardous waste incineration residue. Zhang P; Zeng L; Zhang S; Li C; Li D Environ Sci Pollut Res Int; 2023 Mar; 30(11):29392-29406. PubMed ID: 36417072 [TBL] [Abstract][Full Text] [Related]
35. Microbial activity and phospholipid fatty acid pattern in long-term tannery waste-contaminated soil. Kamaludeen SP; Megharaj M; Naidu R; Singleton I; Juhasz AL; Hawke BG; Sethunathan N Ecotoxicol Environ Saf; 2003 Oct; 56(2):302-10. PubMed ID: 12927562 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765 [TBL] [Abstract][Full Text] [Related]
37. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Geelhoed JS; Meeussen JC; Roe MJ; Hillier S; Thomas RP; Farmer JG; Paterson E Environ Sci Technol; 2003 Jul; 37(14):3206-13. PubMed ID: 12901671 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the structural and functional diversity of indigenous soil microbial communities in smelter-impacted and nonimpacted soils. Anderson JA; Hooper MJ; Zak JC; Cox SB Environ Toxicol Chem; 2009 Mar; 28(3):534-41. PubMed ID: 18980388 [TBL] [Abstract][Full Text] [Related]
39. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. Farmer JG; Thomas RP; Graham MC; Geelhoed JS; Lumsdon DG; Paterson E J Environ Monit; 2002 Apr; 4(2):235-43. PubMed ID: 11993762 [TBL] [Abstract][Full Text] [Related]
40. Leaching of hexavalent chromium from young chromite ore processing residue. Matern K; Weigand H; Kretzschmar R; Mansfeldt T J Environ Qual; 2020 May; 49(3):712-722. PubMed ID: 33016406 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]