These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 28551120)
21. Full-Range pH Stable Au-Clusters in Nanogel for Confinement-Enhanced Emission and Improved Sulfide Sensing in Living Cells. Bai X; Xu S; Wang L Anal Chem; 2018 Mar; 90(5):3270-3275. PubMed ID: 29430925 [TBL] [Abstract][Full Text] [Related]
22. A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Park KS; Kim MI; Woo MA; Park HG Biosens Bioelectron; 2013 Jul; 45():65-9. PubMed ID: 23454739 [TBL] [Abstract][Full Text] [Related]
23. Review of Chemical Sensors for Hydrogen Sulfide Detection in Organisms and Living Cells. Yang M; Zhou Y; Wang K; Luo C; Xie M; Shi X; Lin X Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992027 [TBL] [Abstract][Full Text] [Related]
24. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Xiong X; Tang Y; Zhang L; Zhao S Talanta; 2015 Jan; 132():790-5. PubMed ID: 25476379 [TBL] [Abstract][Full Text] [Related]
25. Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized Au nanoclusters/amino-functionalized graphene oxide hybrids. Lan J; Zou HY; Wang Q; Zeng P; Li YF; Huang CZ Talanta; 2016 Dec; 161():482-488. PubMed ID: 27769436 [TBL] [Abstract][Full Text] [Related]
26. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. Chang HC; Chang YF; Fan NC; Ho JA ACS Appl Mater Interfaces; 2014; 6(21):18824-31. PubMed ID: 25323388 [TBL] [Abstract][Full Text] [Related]
27. Fluorescence Enhancement of Terminal Amine Assembled on Gold Nanoclusters and Its Application to Ratiometric Lysine Detection. Liu G; Feng DQ; Hua D; Liu T; Qi G; Wang W Langmuir; 2017 Dec; 33(51):14643-14648. PubMed ID: 29195047 [TBL] [Abstract][Full Text] [Related]
28. Unconventional application of gold nanoclusters/Zn-MOF composite for fluorescence turn-on sensitive detection of zinc ion. Li Y; Hu X; Zhang X; Cao H; Huang Y Anal Chim Acta; 2018 Sep; 1024():145-152. PubMed ID: 29776540 [TBL] [Abstract][Full Text] [Related]
29. Distance dependent fluorescence quenching and enhancement of gold nanoclusters by gold nanoparticles. Qin H; Ma D; Du J Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():161-166. PubMed ID: 28810178 [TBL] [Abstract][Full Text] [Related]
30. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters. Dai H; Shi Y; Wang Y; Sun Y; Hu J; Ni P; Li Z Biosens Bioelectron; 2014 Mar; 53():76-81. PubMed ID: 24121226 [TBL] [Abstract][Full Text] [Related]
31. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Halawa MI; Gao W; Saqib M; Kitte SA; Wu F; Xu G Biosens Bioelectron; 2017 Sep; 95():8-14. PubMed ID: 28399445 [TBL] [Abstract][Full Text] [Related]
32. Ultrasensitive sensing of Hg(2+) and CH(3)Hg(+) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Lin YH; Tseng WL Anal Chem; 2010 Nov; 82(22):9194-200. PubMed ID: 20954728 [TBL] [Abstract][Full Text] [Related]
33. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission. Zhang G; Qiao Y; Xu T; Zhang C; Zhang Y; Shi L; Shuang S; Dong C Nanoscale; 2015 Aug; 7(29):12666-72. PubMed ID: 26148527 [TBL] [Abstract][Full Text] [Related]
34. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters. Wu D; Qi W; Liu C; Zhang Q Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753 [TBL] [Abstract][Full Text] [Related]
35. Sensing of Hydrogen Sulfide Gas in the Raman-Silent Region Based on Gold Nano-Bipyramids (Au NBPs) Encapsulated by Zeolitic Imidazolate Framework-8. Chen J; Guo L; Chen L; Qiu B; Hong G; Lin Z ACS Sens; 2020 Dec; 5(12):3964-3970. PubMed ID: 33275846 [TBL] [Abstract][Full Text] [Related]
36. Oligonucleotide-templated rapid formation of fluorescent gold nanoclusters and its application for Hg Qing T; He X; He D; Qing Z; Wang K; Lei Y; Liu T; Tang P; Li Y Talanta; 2016 Dec; 161():170-176. PubMed ID: 27769395 [TBL] [Abstract][Full Text] [Related]
37. Luminescent gold nanocluster-based sensing platform for accurate H Yu Q; Gao P; Zhang KY; Tong X; Yang H; Liu S; Du J; Zhao Q; Huang W Light Sci Appl; 2017 Dec; 6(12):e17107. PubMed ID: 30167221 [TBL] [Abstract][Full Text] [Related]
38. Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. Yan Y; Zhang K; Yu H; Zhu H; Sun M; Hayat T; Alsaedi A; Wang S Talanta; 2017 Nov; 174():387-393. PubMed ID: 28738597 [TBL] [Abstract][Full Text] [Related]
39. Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Mu X; Qi L; Dong P; Qiao J; Hou J; Nie Z; Ma H Biosens Bioelectron; 2013 Nov; 49():249-55. PubMed ID: 23774161 [TBL] [Abstract][Full Text] [Related]
40. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. Hu D; Sheng Z; Gong P; Zhang P; Cai L Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]