These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 28551424)
1. Formulation Optimization of Freeze-Dried Long-Circulating Liposomes and In-Line Monitoring of the Freeze-Drying Process Using an NIR Spectroscopy Tool. Sylvester B; Porfire A; Van Bockstal PJ; Porav S; Achim M; Beer T; Tomuţă I J Pharm Sci; 2018 Jan; 107(1):139-148. PubMed ID: 28551424 [TBL] [Abstract][Full Text] [Related]
2. Cyclodextrin as membrane protectant in spray-drying and freeze-drying of PEGylated liposomes. van den Hoven JM; Metselaar JM; Storm G; Beijnen JH; Nuijen B Int J Pharm; 2012 Nov; 438(1-2):209-16. PubMed ID: 22960501 [TBL] [Abstract][Full Text] [Related]
3. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD). Sylvester B; Porfire A; Achim M; Rus L; Tomuţă I Drug Dev Ind Pharm; 2018 Mar; 44(3):385-397. PubMed ID: 29098869 [TBL] [Abstract][Full Text] [Related]
4. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. De Beer TR; Vercruysse P; Burggraeve A; Quinten T; Ouyang J; Zhang X; Vervaet C; Remon JP; Baeyens WR J Pharm Sci; 2009 Sep; 98(9):3430-46. PubMed ID: 19130604 [TBL] [Abstract][Full Text] [Related]
5. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring. De Beer TR; Allesø M; Goethals F; Coppens A; Heyden YV; De Diego HL; Rantanen J; Verpoort F; Vervaet C; Remon JP; Baeyens WR Anal Chem; 2007 Nov; 79(21):7992-8003. PubMed ID: 17896825 [TBL] [Abstract][Full Text] [Related]
6. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying. Kauppinen A; Toiviainen M; Korhonen O; Aaltonen J; Järvinen K; Paaso J; Juuti M; Ketolainen J Anal Chem; 2013 Feb; 85(4):2377-84. PubMed ID: 23351045 [TBL] [Abstract][Full Text] [Related]
7. NIR spectroscopy for the in-line monitoring of a multicomponent formulation during the entire freeze-drying process. Rosas JG; de Waard H; De Beer T; Vervaet C; Remon JP; Hinrichs WL; Frijlink HW; Blanco M J Pharm Biomed Anal; 2014 Aug; 97():39-46. PubMed ID: 24814994 [TBL] [Abstract][Full Text] [Related]
8. Applicability of Raman and near-infrared spectroscopy in the monitoring of freeze-drying injectable ibuprofen. Preskar M; Korasa K; Vrbanec T; Klement D; Vrečer F; Gašperlin M Drug Dev Ind Pharm; 2021 May; 47(5):758-769. PubMed ID: 34032548 [TBL] [Abstract][Full Text] [Related]
9. Validation of a multipoint near-infrared spectroscopy method for in-line moisture content analysis during freeze-drying. Kauppinen A; Toiviainen M; Lehtonen M; Järvinen K; Paaso J; Juuti M; Ketolainen J J Pharm Biomed Anal; 2014 Jul; 95():229-37. PubMed ID: 24699368 [TBL] [Abstract][Full Text] [Related]
10. Lyoprotectant Optimization for the Freeze-Drying of Receptor-Targeted Trojan Horse Liposomes for Plasmid DNA Delivery. Lee H; Jiang D; Pardridge WM Mol Pharm; 2020 Jun; 17(6):2165-2174. PubMed ID: 32315188 [TBL] [Abstract][Full Text] [Related]
11. Lyoprotective Effect of Alkyl Sulfobetaines for Freeze-drying 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine Liposomes. Aikawa T; Sato K; Okado H; Takahashi Y; Kondo T; Yuasa M J Oleo Sci; 2017 Nov; 66(11):1277-1284. PubMed ID: 29021493 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers. De Beer TR; Wiggenhorn M; Hawe A; Kasper JC; Almeida A; Quinten T; Friess W; Winter G; Vervaet C; Remon JP Talanta; 2011 Feb; 83(5):1623-33. PubMed ID: 21238761 [TBL] [Abstract][Full Text] [Related]
13. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Luo WC; O'Reilly Beringhs A; Kim R; Zhang W; Patel SM; Bogner RH; Lu X Eur J Pharm Biopharm; 2021 Dec; 169():256-267. PubMed ID: 34732383 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared analysis of nanofibrillated cellulose aerogel manufacturing. Merivaara A; Kekkonen J; Monola J; Koivunotko E; Savolainen M; Silvast T; Svedström K; Diaz A; Holler M; Korhonen O; Yliperttula M; Valkonen S Int J Pharm; 2022 Apr; 617():121581. PubMed ID: 35176331 [TBL] [Abstract][Full Text] [Related]
15. An overview of liposome lyophilization and its future potential. Chen C; Han D; Cai C; Tang X J Control Release; 2010 Mar; 142(3):299-311. PubMed ID: 19874861 [TBL] [Abstract][Full Text] [Related]
16. Near-infrared imaging for high-throughput screening of moisture induced changes in freeze-dried formulations. Trnka H; Palou A; Panouillot PE; Kauppinen A; Toiviainen M; Grohganz H; Alcalà M; Juuti M; Ketolainen J; Rantanen J J Pharm Sci; 2014 Sep; 103(9):2839-2846. PubMed ID: 24665039 [TBL] [Abstract][Full Text] [Related]
17. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related]
19. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes. Cook IA; Ward KR PDA J Pharm Sci Technol; 2011; 65(5):457-67. PubMed ID: 22293835 [TBL] [Abstract][Full Text] [Related]
20. Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. Stark B; Pabst G; Prassl R Eur J Pharm Sci; 2010 Nov; 41(3-4):546-55. PubMed ID: 20800680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]