BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28551424)

  • 21. Long-Circulating and Fusogenic Liposomes Loaded with Paclitaxel and Doxorubicin: Effect of Excipient, Freezing, and Freeze-Drying on Quality Attributes.
    Roque M; Geraldes D; da Silva C; Oliveira M; Nascimento L
    Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying.
    Christensen D; Foged C; Rosenkrands I; Nielsen HM; Andersen P; Agger EM
    Biochim Biophys Acta; 2007 Sep; 1768(9):2120-9. PubMed ID: 17555704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs.
    Elbrink K; Van Hees S; Holm R; Kiekens F
    Int J Pharm; 2023 Mar; 635():122717. PubMed ID: 36781084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of controlled ice nucleation and lyoprotectants on nanoparticle stability during Freeze-drying and upon storage.
    Luo WC; Zhang W; Kim R; Chong H; Patel SM; Bogner RH; Lu X
    Int J Pharm; 2023 Jun; 641():123084. PubMed ID: 37245738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of lyophilised mixtures using multivariate analysis of NIR spectra.
    Grohganz H; Fonteyne M; Skibsted E; Falck T; Palmqvist B; Rantanen J
    Eur J Pharm Biopharm; 2010 Feb; 74(2):406-12. PubMed ID: 19577644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced permeability of freeze-dried liposomal bilayers upon rehydration.
    Zhang W; van Winden EC; Bouwstra JA; Crommelin DJ
    Cryobiology; 1997 Nov; 35(3):277-89. PubMed ID: 9367615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability.
    Mensink MA; Van Bockstal PJ; Pieters S; De Meyer L; Frijlink HW; van der Voort Maarschalk K; Hinrichs WL; De Beer T
    Int J Pharm; 2015 Dec; 496(2):792-800. PubMed ID: 26608621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability.
    Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML
    Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Investigation into the Spatial Distribution of Moisture in Freeze-Dried Products Using NIR Spectroscopy and Chemical Imaging.
    Mohammed A; Cournoyer A; Gosselin R
    PDA J Pharm Sci Technol; 2023; 77(2):55-66. PubMed ID: 36122914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multivariate analysis of phenol in freeze-dried and spray-dried insulin formulations by NIR and FTIR.
    Maltesen MJ; Bjerregaard S; Hovgaard L; Havelund S; van de Weert M; Grohganz H
    AAPS PharmSciTech; 2011 Jun; 12(2):627-36. PubMed ID: 21560023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.
    Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of using complementary process analyzers for the process monitoring, analysis, and understanding of freeze drying.
    De Beer TR; Wiggenhorn M; Veillon R; Debacq C; Mayeresse Y; Moreau B; Burggraeve A; Quinten T; Friess W; Winter G; Vervaet C; Remon JP; Baeyens WR
    Anal Chem; 2009 Sep; 81(18):7639-49. PubMed ID: 19681620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is vitrification sufficient to preserve liposomes during freeze-drying?
    Crowe JH; Leslie SB; Crowe LM
    Cryobiology; 1994 Aug; 31(4):355-66. PubMed ID: 7523026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Annealing as a tool for the optimization of lyophilization and ensuring of the stability of protein-loaded PLGA nanoparticles.
    Fonte P; Lino PR; Seabra V; Almeida AJ; Reis S; Sarmento B
    Int J Pharm; 2016 Apr; 503(1-2):163-73. PubMed ID: 26972381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of machine learning tools and NIR spectra to estimate residual moisture in freeze-dried products.
    Massei A; Falco N; Fissore D
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122485. PubMed ID: 36801736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of lyophilization on the stability of liposomes containing 5-FU.
    Glavas-Dodov M; Fredro-Kumbaradzi E; Goracinova K; Simonoska M; Calis S; Trajkovic-Jolevska S; Hincal AA
    Int J Pharm; 2005 Mar; 291(1-2):79-86. PubMed ID: 15707734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.
    Brouckaert D; De Meyer L; Vanbillemont B; Van Bockstal PJ; Lammens J; Mortier S; Corver J; Vervaet C; Nopens I; De Beer T
    Anal Chem; 2018 Apr; 90(7):4354-4362. PubMed ID: 29528218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.