BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28551744)

  • 21. Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus.
    Wang Z; Yan S; Liu C; Chen F; Wang T
    J Proteome Res; 2012 May; 11(5):2739-53. PubMed ID: 22424419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Endophytic Fungus Phomopsis liquidambari Increases Nodulation and N
    Xie XG; Fu WQ; Zhang FM; Shi XM; Zeng YT; Li H; Zhang W; Dai CC
    Microb Ecol; 2017 Aug; 74(2):427-440. PubMed ID: 28168354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome.
    Geng LL; Shao GX; Raymond B; Wang ML; Sun XX; Shu CL; Zhang J
    Microbiol Res; 2018 Jun; 211():13-20. PubMed ID: 29705202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of White LED Light and UV-C Radiation on Stilbene Biosynthesis and Phytochemicals Accumulation Identified by UHPLC-MS/MS during Peanut (
    Zhu T; Yang J; Zhang D; Cai Q; Zhou D; Tu S; Liu Q; Tu K
    J Agric Food Chem; 2020 May; 68(21):5900-5909. PubMed ID: 32348140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.
    Aisyah S; Gruppen H; Slager M; Helmink B; Vincken JP
    J Agric Food Chem; 2015 Oct; 63(42):9260-8. PubMed ID: 26458982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans.
    Guajardo-Flores D; García-Patiño M; Serna-Guerrero D; Gutiérrez-Uribe JA; Serna-Saldívar SO
    Food Chem; 2012 Oct; 134(3):1312-9. PubMed ID: 25005948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of a synthetic seed for the common reed harboring an endophytic bacterium promoting seedling growth under cadmium stress.
    Gao T; Shi X
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8871-8879. PubMed ID: 29330819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variation in fungal microbiome (mycobiome) and aflatoxins during simulated storage of in-shell peanuts and peanut kernels.
    Xing F; Ding N; Liu X; Selvaraj JN; Wang L; Zhou L; Zhao Y; Wang Y; Liu Y
    Sci Rep; 2016 May; 6():25930. PubMed ID: 27180614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda).
    Oono R; Lefèvre E; Simha A; Lutzoni F
    Fungal Biol; 2015 Oct; 119(10):917-928. PubMed ID: 26399186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem.
    Kusari P; Kusari S; Spiteller M; Kayser O
    Antonie Van Leeuwenhoek; 2014 Oct; 106(4):771-88. PubMed ID: 25100187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ACTIVATION AND OXIDATION OF ACETIC ACID-1-C14 BY CELL FREE HOMOGENATES OF GERMINATING PEANUT COTYLEDONS.
    REBEIZ C; CASTELFRANCO P; BREIDENBACH RW
    Plant Physiol; 1965 Mar; 40(2):286-9. PubMed ID: 14285021
    [No Abstract]   [Full Text] [Related]  

  • 33. Isolation of phytase-producing yeasts from rice seedlings for prospective probiotic applications.
    Zhu A; Tan H; Cao L
    3 Biotech; 2019 Jun; 9(6):216. PubMed ID: 31114740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India.
    Seena S; Sridhar KR
    Can J Microbiol; 2004 Dec; 50(12):1015-21. PubMed ID: 15714232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome.
    Yang L; Danzberger J; Schöler A; Schröder P; Schloter M; Radl V
    Front Plant Sci; 2017; 8():1005. PubMed ID: 28663753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatic embryogenesis in peanut (Arachis hypogaea L.): stimulation of direct differentiation of somatic embryos by forchlorfenuron (CPPU).
    Murthy BN; Saxena PK
    Plant Cell Rep; 1994 Dec; 14(2-3):145-50. PubMed ID: 24192883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Synthesis and degradation of the peanut storage proteins during seed development and germination].
    Liao B; Lu CB; Wang L; Li HG; Hang SZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Feb; 30(1):115-8. PubMed ID: 15583418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in δ(13)C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants.
    Ghashghaie J; Badeck FW; Girardin C; Sketriené D; Lamothe-Sibold M; Werner RA
    Isotopes Environ Health Stud; 2015; 51(1):93-108. PubMed ID: 25704798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.
    Anzuay MS; Ciancio MGR; Ludueña LM; Angelini JG; Barros G; Pastor N; Taurian T
    Microbiol Res; 2017 Jun; 199():98-109. PubMed ID: 28454714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of Lectins in the Jumbo Virginia and Spanish Varieties of the Peanut, Arachis hypogaea L.
    Pueppke SG
    Plant Physiol; 1979 Oct; 64(4):575-80. PubMed ID: 16661012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.