BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28551752)

  • 21. Modeling autism-relevant behavioral phenotypes in rats and mice: Do 'autistic' rodents exist?
    Servadio M; Vanderschuren LJ; Trezza V
    Behav Pharmacol; 2015 Sep; 26(6):522-40. PubMed ID: 26226143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities.
    Wöhr M; Orduz D; Gregory P; Moreno H; Khan U; Vörckel KJ; Wolfer DP; Welzl H; Gall D; Schiffmann SN; Schwaller B
    Transl Psychiatry; 2015 Mar; 5(3):e525. PubMed ID: 25756808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic and Pharmacological Reversibility of Phenotypes in Mouse Models of Autism Spectrum Disorder.
    Schroeder JC; Deliu E; Novarino G; Schmeisser MJ
    Adv Anat Embryol Cell Biol; 2017; 224():189-211. PubMed ID: 28551757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebellar and Striatal Pathologies in Mouse Models of Autism Spectrum Disorder.
    Peter S; De Zeeuw CI; Boeckers TM; Schmeisser MJ
    Adv Anat Embryol Cell Biol; 2017; 224():103-119. PubMed ID: 28551753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MPS-IIIA mice acquire autistic behaviours with age.
    Lau AA; Tamang SJ; Hemsley KM
    J Inherit Metab Dis; 2018 Jul; 41(4):669-677. PubMed ID: 29520737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder.
    Kim H; Lim CS; Kaang BK
    Behav Brain Funct; 2016 Jan; 12(1):3. PubMed ID: 26790724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxytocin in animal models of autism spectrum disorder.
    Peñagarikano O
    Dev Neurobiol; 2017 Feb; 77(2):202-213. PubMed ID: 27603327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder.
    Brunner D; Kabitzke P; He D; Cox K; Thiede L; Hanania T; Sabath E; Alexandrov V; Saxe M; Peles E; Mills A; Spooren W; Ghosh A; Feliciano P; Benedetti M; Luo Clayton A; Biemans B
    PLoS One; 2015; 10(8):e0134572. PubMed ID: 26273832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD.
    Ebihara K; Fujiwara H; Awale S; Dibwe DF; Araki R; Yabe T; Matsumoto K
    Behav Brain Res; 2017 Sep; 334():6-15. PubMed ID: 28743598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment.
    Banerjee A; Luong JA; Ho A; Saib AO; Ploski JE
    Mol Autism; 2016; 7():16. PubMed ID: 26929812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles.
    Wöhr M
    Neurosci Biobehav Rev; 2014 Jun; 43():199-212. PubMed ID: 24726578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid.
    Castro K; Baronio D; Perry IS; Riesgo RDS; Gottfried C
    Nutr Neurosci; 2017 Jul; 20(6):343-350. PubMed ID: 26856821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder.
    Jann K; Hernandez LM; Beck-Pancer D; McCarron R; Smith RX; Dapretto M; Wang DJ
    Brain Behav; 2015 Sep; 5(9):e00358. PubMed ID: 26445698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour.
    Rawsthorne H; Calahorro F; Holden-Dye L; O' Connor V; Dillon J
    PLoS One; 2021; 16(5):e0243121. PubMed ID: 34043629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.
    Rausch A; Zhang W; Haak KV; Mennes M; Hermans EJ; van Oort E; van Wingen G; Beckmann CF; Buitelaar JK; Groen WB
    Mol Autism; 2016; 7():13. PubMed ID: 26823966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Dopamine Hypothesis of Autism Spectrum Disorder.
    Pavăl D
    Dev Neurosci; 2017; 39(5):355-360. PubMed ID: 28750400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish models of autism spectrum disorder.
    Meshalkina DA; N Kizlyk M; V Kysil E; Collier AD; Echevarria DJ; Abreu MS; Barcellos LJG; Song C; Warnick JE; Kyzar EJ; Kalueff AV
    Exp Neurol; 2018 Jan; 299(Pt A):207-216. PubMed ID: 28163161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model.
    Matas E; Maisterrena A; Thabault M; Balado E; Francheteau M; Balbous A; Galvan L; Jaber M
    Mol Autism; 2021 Jan; 12(1):2. PubMed ID: 33468258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Microtubule-Associated Protein in Autism Spectrum Disorder.
    Chang Q; Yang H; Wang M; Wei H; Hu F
    Neurosci Bull; 2018 Dec; 34(6):1119-1126. PubMed ID: 29936584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxytocin in the regulation of social behaviours in medial amygdala-lesioned mice via the inhibition of the extracellular signal-regulated kinase signalling pathway.
    Wang Y; Zhao S; Wu Z; Feng Y; Zhao C; Zhang C
    Clin Exp Pharmacol Physiol; 2015 May; 42(5):465-74. PubMed ID: 25707920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.