These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 28551854)
1. Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation. Jiao S; Chen J; Yu H; Shen Z Appl Microbiol Biotechnol; 2017 Aug; 101(16):6321-6332. PubMed ID: 28551854 [TBL] [Abstract][Full Text] [Related]
2. Improving stress tolerance and cell integrity of Rhodococcus ruber by overexpressing small-shock-protein Hsp16 of Rhodococcus. Wang M; Chen J; Yu H; Shen Z J Ind Microbiol Biotechnol; 2018 Oct; 45(10):929-938. PubMed ID: 30066247 [TBL] [Abstract][Full Text] [Related]
3. Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase. Tian Y; Chen J; Yu H; Shen Z J Microbiol Biotechnol; 2016 Feb; 26(2):337-46. PubMed ID: 26562693 [TBL] [Abstract][Full Text] [Related]
4. Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Ma Y; Yu H; Pan W; Liu C; Zhang S; Shen Z Bioresour Technol; 2010 Jan; 101(1):285-91. PubMed ID: 19720524 [TBL] [Abstract][Full Text] [Related]
6. Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. Ma Y; Yu H J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1421-30. PubMed ID: 22638790 [TBL] [Abstract][Full Text] [Related]
7. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Huang L; Zhao L; Zan X; Song Y; Ratledge C Biotechnol Lett; 2016 Jun; 38(6):999-1008. PubMed ID: 26956236 [TBL] [Abstract][Full Text] [Related]
8. Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Iwabuchi N; Sunairi M; Anzai H; Nakajima M; Harayama S Appl Environ Microbiol; 2000 Nov; 66(11):5073-7. PubMed ID: 11055965 [TBL] [Abstract][Full Text] [Related]
15. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor. Li J; Liu J; Chen J; Wang Y; Luo G; Yu H Bioresour Technol; 2015; 187():198-204. PubMed ID: 25846190 [TBL] [Abstract][Full Text] [Related]
16. Effects of interface adsorption of Rhodococcus ruber TH3 cells on the biocatalytic hydration of acrylonitrile to acrylamide. Guo M; Yang L; Li J; Jiao S; Wang Y; Luo G; Yu H Bioprocess Biosyst Eng; 2018 Jul; 41(7):931-938. PubMed ID: 29552729 [TBL] [Abstract][Full Text] [Related]
17. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. Jiao S; Yu H; Shen Z N Biotechnol; 2018 Sep; 44():41-49. PubMed ID: 29689306 [TBL] [Abstract][Full Text] [Related]
18. Cell-surface hydrophobicity and scum formation of Rhodococcus rhodochrous strains with different colonial morphologies. Sunairi M; Iwabuchi N; Yoshizawa Y; Murooka H; Morisaki H; Nakajima M J Appl Microbiol; 1997 Feb; 82(2):204-10. PubMed ID: 12452595 [TBL] [Abstract][Full Text] [Related]
19. Efficient electrotransformation of Rhodococcus ruber YYL with abundant extracellular polymeric substances via a cell wall-weakening strategy. Huang H; Liu Z; Qiu Y; Wang X; Wang H; Xiao H; Lu Z FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 33974050 [TBL] [Abstract][Full Text] [Related]
20. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: Physiological and transcriptome. Wang C; Chen Y; Zhou H; Li X; Tan Z Chemosphere; 2020 Jan; 238():124571. PubMed ID: 31472351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]