These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28551854)

  • 1. Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation.
    Jiao S; Chen J; Yu H; Shen Z
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6321-6332. PubMed ID: 28551854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving stress tolerance and cell integrity of Rhodococcus ruber by overexpressing small-shock-protein Hsp16 of Rhodococcus.
    Wang M; Chen J; Yu H; Shen Z
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):929-938. PubMed ID: 30066247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase.
    Tian Y; Chen J; Yu H; Shen Z
    J Microbiol Biotechnol; 2016 Feb; 26(2):337-46. PubMed ID: 26562693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant.
    Ma Y; Yu H; Pan W; Liu C; Zhang S; Shen Z
    Bioresour Technol; 2010 Jan; 101(1):285-91. PubMed ID: 19720524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Chaperones
    Xu C; Tang L; Liang Y; Jiao S; Yu H; Luo H
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition.
    Ma Y; Yu H
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1421-30. PubMed ID: 22638790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases.
    Huang L; Zhao L; Zan X; Song Y; Ratledge C
    Biotechnol Lett; 2016 Jun; 38(6):999-1008. PubMed ID: 26956236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous.
    Iwabuchi N; Sunairi M; Anzai H; Nakajima M; Harayama S
    Appl Environ Microbiol; 2000 Nov; 66(11):5073-7. PubMed ID: 11055965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630.
    Alvarez HM; Mayer F; Fabritius D; Steinbüchel A
    Arch Microbiol; 1996 Jun; 165(6):377-86. PubMed ID: 8661931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Rhodococcus ruber Chol-4: A cell factory for testosterone production.
    Guevara G; Olortegui Flores Y; Fernández de Las Heras L; Perera J; Navarro Llorens JM
    PLoS One; 2019; 14(7):e0220492. PubMed ID: 31348804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
    Wei Z; Zeng G; Kosa M; Huang D; Ragauskas AJ
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1234-46. PubMed ID: 25377250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630.
    Zhang LS; Xu P; Chu MY; Zong MH; Yang JG; Lou WY
    World J Microbiol Biotechnol; 2019 Oct; 35(11):164. PubMed ID: 31637528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional differentiation of 3-ketosteroid Δ
    Guevara G; Fernández de Las Heras L; Perera J; Navarro Llorens JM
    Microb Cell Fact; 2017 Mar; 16(1):42. PubMed ID: 28288625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust.
    Ivshina IB; Kuyukina MS; Krivoruchko AV; Plekhov OA; Naimark OB; Podorozhko EA; Lozinsky VI
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5315-27. PubMed ID: 23584244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor.
    Li J; Liu J; Chen J; Wang Y; Luo G; Yu H
    Bioresour Technol; 2015; 187():198-204. PubMed ID: 25846190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of interface adsorption of Rhodococcus ruber TH3 cells on the biocatalytic hydration of acrylonitrile to acrylamide.
    Guo M; Yang L; Li J; Jiao S; Wang Y; Luo G; Yu H
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):931-938. PubMed ID: 29552729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression.
    Jiao S; Yu H; Shen Z
    N Biotechnol; 2018 Sep; 44():41-49. PubMed ID: 29689306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-surface hydrophobicity and scum formation of Rhodococcus rhodochrous strains with different colonial morphologies.
    Sunairi M; Iwabuchi N; Yoshizawa Y; Murooka H; Morisaki H; Nakajima M
    J Appl Microbiol; 1997 Feb; 82(2):204-10. PubMed ID: 12452595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient electrotransformation of Rhodococcus ruber YYL with abundant extracellular polymeric substances via a cell wall-weakening strategy.
    Huang H; Liu Z; Qiu Y; Wang X; Wang H; Xiao H; Lu Z
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 33974050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: Physiological and transcriptome.
    Wang C; Chen Y; Zhou H; Li X; Tan Z
    Chemosphere; 2020 Jan; 238():124571. PubMed ID: 31472351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.