These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
645 related articles for article (PubMed ID: 28552068)
1. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications. Sabra S; Abdelmoneem M; Abdelwakil M; Mabrouk MT; Anwar D; Mohamed R; Khattab S; Bekhit A; Elkhodairy K; Freag M; Elzoghby A Curr Pharm Des; 2017; 23(35):5213-5229. PubMed ID: 28552068 [TBL] [Abstract][Full Text] [Related]
2. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. Zhang Y; Huang Y; Li S AAPS PharmSciTech; 2014 Aug; 15(4):862-71. PubMed ID: 24700296 [TBL] [Abstract][Full Text] [Related]
3. Advances in polymeric micelles for drug delivery and tumor targeting. Kedar U; Phutane P; Shidhaye S; Kadam V Nanomedicine; 2010 Dec; 6(6):714-29. PubMed ID: 20542144 [TBL] [Abstract][Full Text] [Related]
4. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Muley P; Kumar S; El Kourati F; Kesharwani SS; Tummala H Int J Pharm; 2016 Mar; 500(1-2):32-41. PubMed ID: 26792170 [TBL] [Abstract][Full Text] [Related]
5. Amphiphilic polysaccharide-hydrophobicized graft polymeric micelles for drug delivery nanosystems. Liu Y; Sun J; Zhang P; He Z Curr Med Chem; 2011; 18(17):2638-48. PubMed ID: 21568897 [TBL] [Abstract][Full Text] [Related]
6. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
7. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers. Ranjbari J; Mokhtarzadeh A; Alibakhshi A; Tabarzad M; Hejazi M; Ramezani M Curr Pharm Des; 2018 Feb; 23(39):6019-6032. PubMed ID: 28482782 [TBL] [Abstract][Full Text] [Related]
8. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Gu L; Faig A; Abdelhamid D; Uhrich K Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. Mahmoudzadeh M; Fassihi A; Emami J; Davies NM; Dorkoosh F J Drug Target; 2013 Sep; 21(8):693-709. PubMed ID: 23915108 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular Self-Assembled Nanogels a New Platform for Anticancer Drug Delivery. Varshosaz J; Taymouri S; Ghassami E Curr Pharm Des; 2017; 23(35):5242-5260. PubMed ID: 28699536 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Sabra SA; Elzoghby AO; Sheweita SA; Haroun M; Helmy MW; Eldemellawy MA; Xia Y; Goodale D; Allan AL; Rohani S Eur J Pharm Biopharm; 2018 Jul; 128():156-169. PubMed ID: 29689288 [TBL] [Abstract][Full Text] [Related]
13. Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status. Aqeel R; Srivastava N; Kushwaha P Recent Pat Nanotechnol; 2022; 16(4):283-294. PubMed ID: 34303336 [TBL] [Abstract][Full Text] [Related]
14. Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Li Y; Qian Y; Liu T; Zhang G; Liu S Biomacromolecules; 2012 Nov; 13(11):3877-86. PubMed ID: 23013152 [TBL] [Abstract][Full Text] [Related]
15. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Alvarez-Lorenzo C; Sosnik A; Concheiro A Curr Drug Targets; 2011 Jul; 12(8):1112-30. PubMed ID: 21443477 [TBL] [Abstract][Full Text] [Related]
16. Block copolymer micelles: preparation, characterization and application in drug delivery. Gaucher G; Dufresne MH; Sant VP; Kang N; Maysinger D; Leroux JC J Control Release; 2005 Dec; 109(1-3):169-88. PubMed ID: 16289422 [TBL] [Abstract][Full Text] [Related]
17. Progress of drug-loaded polymeric micelles into clinical studies. Cabral H; Kataoka K J Control Release; 2014 Sep; 190():465-76. PubMed ID: 24993430 [TBL] [Abstract][Full Text] [Related]
18. Zein-based Nanocarriers as Potential Natural Alternatives for Drug and Gene Delivery: Focus on Cancer Therapy. Elzoghby A; Freag M; Mamdouh H; Elkhodairy K Curr Pharm Des; 2017; 23(35):5261-5271. PubMed ID: 28641543 [TBL] [Abstract][Full Text] [Related]
19. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. Braunová A; Kostka L; Sivák L; Cuchalová L; Hvězdová Z; Laga R; Filippov S; Černoch P; Pechar M; Janoušková O; Šírová M; Etrych T J Control Release; 2017 Jan; 245():41-51. PubMed ID: 27871991 [TBL] [Abstract][Full Text] [Related]
20. Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics. Thotakura N; Parashar P; Raza K Expert Opin Drug Metab Toxicol; 2021 Mar; 17(3):323-332. PubMed ID: 33292023 [No Abstract] [Full Text] [Related] [Next] [New Search]