BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28552515)

  • 1. The rabbit as a behavioral model system for magnetic resonance imaging.
    Weiss C; Procissi D; Power JM; Disterhoft JF
    J Neurosci Methods; 2018 Apr; 300():196-205. PubMed ID: 28552515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-induced manganese-dependent MRI (AIM-MRI) and functional MRI in awake rabbits during somatosensory stimulation.
    Schroeder MP; Weiss C; Procissi D; Wang L; Disterhoft JF
    Neuroimage; 2016 Feb; 126():72-80. PubMed ID: 26589332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain activity studied with magnetic resonance imaging in awake rabbits.
    Weiss C; Bertolino N; Procissi D; Disterhoft JF
    Front Neuroimaging; 2022; 1():965529. PubMed ID: 37555136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a removable head fixation device for longitudinal behavioral and imaging studies in rats.
    Hori Y; Ogura J; Ihara N; Higashi T; Tashiro T; Honda M; Hanakawa T
    J Neurosci Methods; 2016 May; 264():11-15. PubMed ID: 26903082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradual Restraint Habituation for Awake Functional Magnetic Resonance Imaging Combined With a Sparse Imaging Paradigm Reduces Motion Artifacts and Stress Levels in Rodents.
    Russo G; Helluy X; Behroozi M; Manahan-Vaughan D
    Front Neurosci; 2021; 15():805679. PubMed ID: 34992520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological effects of a habituation procedure for functional MRI in awake mice using a cryogenic radiofrequency probe.
    Yoshida K; Mimura Y; Ishihara R; Nishida H; Komaki Y; Minakuchi T; Tsurugizawa T; Mimura M; Okano H; Tanaka KF; Takata N
    J Neurosci Methods; 2016 Dec; 274():38-48. PubMed ID: 27702586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic connectivity of neural networks in the awake rabbit.
    Schroeder MP; Weiss C; Procissi D; Disterhoft JF; Wang L
    Neuroimage; 2016 Apr; 129():260-267. PubMed ID: 26774609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI of visual system activation in the conscious rabbit.
    Wyrwicz AM; Chen N; Li L; Weiss C; Disterhoft JF
    Magn Reson Med; 2000 Sep; 44(3):474-8. PubMed ID: 10975901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic magnetic resonance imaging of carbogen challenge on awake rabbit brain at 1.5T.
    Chen PC; Shoa KH; Jao JC; Hsiao CC
    J Xray Sci Technol; 2018; 26(6):997-1009. PubMed ID: 30223421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory evoked fMRI paradigms in awake mice.
    Chen X; Tong C; Han Z; Zhang K; Bo B; Feng Y; Liang Z
    Neuroimage; 2020 Jan; 204():116242. PubMed ID: 31586674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional magnetic resonance imaging in the awake rabbit: a system for stimulus presentation and response detection during eyeblink conditioning.
    Li L; Weiss C; Disterhoft JF; Wyrwicz AM
    J Neurosci Methods; 2003 Nov; 130(1):45-52. PubMed ID: 14583403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Awake and behaving mouse fMRI during Go/No-Go task.
    Han Z; Chen W; Chen X; Zhang K; Tong C; Zhang X; Li CT; Liang Z
    Neuroimage; 2019 Mar; 188():733-742. PubMed ID: 30611875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.
    Obata T; Uemura K; Nonaka H; Tamura M; Tanada S; Ikehira H
    Magn Reson Imaging; 2006 Jan; 24(1):97-101. PubMed ID: 16410184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral effects of acclimatization to restraint protocol used for awake animal imaging.
    Reed MD; Pira AS; Febo M
    J Neurosci Methods; 2013 Jul; 217(1-2):63-6. PubMed ID: 23562621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast.
    Weng JC; Chen JH; Yang PF; Tseng WY
    Neuroimage; 2007 Jul; 36(4):1179-88. PubMed ID: 17537649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye movement training and recording in alert macaque monkeys: 1. Operant visual conditioning; 2. Magnetic search coil and head restraint surgical implantation; 3. Calibration and recording.
    Foeller P; Tychsen L
    Strabismus; 2002 Mar; 10(1):5-22. PubMed ID: 12185647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open-source hardware designs for MRI of mice, rats, and marmosets: Integrated animal holders and radiofrequency coils.
    Gilbert KM; Schaeffer DJ; Gati JS; Klassen LM; Everling S; Menon RS
    J Neurosci Methods; 2019 Jan; 312():65-72. PubMed ID: 30468825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR-eyetracker: a new method for eye movement recording in functional magnetic resonance imaging.
    Kimmig H; Greenlee MW; Huethe F; Mergner T
    Exp Brain Res; 1999 Jun; 126(3):443-9. PubMed ID: 10382629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive primate head restraint using thermoplastic masks.
    Drucker CB; Carlson ML; Toda K; DeWind NK; Platt ML
    J Neurosci Methods; 2015 Sep; 253():90-100. PubMed ID: 26112334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.