These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 28552820)
1. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. van der Meer SB; Knuschke T; Frede A; Schulze N; Westendorf AM; Epple M Acta Biomater; 2017 Jul; 57():414-425. PubMed ID: 28552820 [TBL] [Abstract][Full Text] [Related]
2. Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Sokolova V; Shi Z; Huang S; Du Y; Kopp M; Frede A; Knuschke T; Buer J; Yang D; Wu J; Westendorf AM; Epple M Acta Biomater; 2017 Dec; 64():401-410. PubMed ID: 28963016 [TBL] [Abstract][Full Text] [Related]
3. Active targeting behaviors of biotinylated pluronic/poly(lactic acid) nanoparticles in vitro through three-step biotin-avidin interaction. Xiong XY; Gong YC; Li ZL; Li YP; Guo L J Biomater Sci Polym Ed; 2011; 22(12):1607-19. PubMed ID: 20699057 [TBL] [Abstract][Full Text] [Related]
4. Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. Langer K; Coester C; Weber C; von Briesen H; Kreuter J Eur J Pharm Biopharm; 2000 May; 49(3):303-7. PubMed ID: 10799823 [TBL] [Abstract][Full Text] [Related]
5. Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin. Saleh SM; Müller R; Mader HS; Duerkop A; Wolfbeis OS Anal Bioanal Chem; 2010 Oct; 398(4):1615-23. PubMed ID: 20446080 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Balthasar S; Michaelis K; Dinauer N; von Briesen H; Kreuter J; Langer K Biomaterials; 2005 May; 26(15):2723-32. PubMed ID: 15585276 [TBL] [Abstract][Full Text] [Related]
7. Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. Magro M; Faralli A; Baratella D; Bertipaglia I; Giannetti S; Salviulo G; Zboril R; Vianello F Langmuir; 2012 Oct; 28(43):15392-401. PubMed ID: 23057670 [TBL] [Abstract][Full Text] [Related]
8. Targeting of vaccinia virus using biotin-avidin viral coating and biotinylated antibodies. Purow B; Staveley-O'Carroll K J Surg Res; 2005 Jan; 123(1):49-54. PubMed ID: 15652950 [TBL] [Abstract][Full Text] [Related]
9. Covalent conjugation of avidin with dye-doped silica nanopaticles and preparation of high density avidin nanoparticles as photostable bioprobes. Chen ZZ; Cai L; Dong XM; Tang HW; Pang DW Biosens Bioelectron; 2012; 37(1):75-81. PubMed ID: 22608767 [TBL] [Abstract][Full Text] [Related]
10. A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding. Hoya K; Guterman LR; Miskolczi L; Hopkins LN Drug Deliv; 2001; 8(4):215-22. PubMed ID: 11757779 [TBL] [Abstract][Full Text] [Related]
11. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Sokolova V; Knuschke T; Buer J; Westendorf AM; Epple M Acta Biomater; 2011 Nov; 7(11):4029-36. PubMed ID: 21784177 [TBL] [Abstract][Full Text] [Related]
12. Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models. Sokolova V; Rojas-Sánchez L; Białas N; Schulze N; Epple M Acta Biomater; 2019 Jan; 84():391-401. PubMed ID: 30503560 [TBL] [Abstract][Full Text] [Related]
13. Coupling of biotin-(poly(ethylene glycol))amine to poly(D,L-lactide-co-glycolide) nanoparticles for versatile surface modification. Weiss B; Schneider M; Muys L; Taetz S; Neumann D; Schaefer UF; Lehr CM Bioconjug Chem; 2007; 18(4):1087-94. PubMed ID: 17590034 [TBL] [Abstract][Full Text] [Related]
14. In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Maldiney T; Kaikkonen MU; Seguin J; le Masne de Chermont Q; Bessodes M; Airenne KJ; Ylä-Herttuala S; Scherman D; Richard C Bioconjug Chem; 2012 Mar; 23(3):472-8. PubMed ID: 22250884 [TBL] [Abstract][Full Text] [Related]
15. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Dinauer N; Balthasar S; Weber C; Kreuter J; Langer K; von Briesen H Biomaterials; 2005 Oct; 26(29):5898-906. PubMed ID: 15949555 [TBL] [Abstract][Full Text] [Related]
16. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Bottini M; D'Annibale F; Magrini A; Cerignoli F; Arimura Y; Dawson MI; Bergamaschi E; Rosato N; Bergamaschi A; Mustelin T Int J Nanomedicine; 2007; 2(2):227-33. PubMed ID: 17722550 [TBL] [Abstract][Full Text] [Related]
17. A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide. Morizono K; Xie Y; Helguera G; Daniels TR; Lane TF; Penichet ML; Chen IS J Gene Med; 2009 Aug; 11(8):655-63. PubMed ID: 19455593 [TBL] [Abstract][Full Text] [Related]
18. Pretargeting with bispecific fusion proteins facilitates delivery of nanoparticles to tumor cells with distinct surface antigens. Yang Q; Parker CL; Lin Y; Press OW; Park SI; Lai SK J Control Release; 2017 Jun; 255():73-80. PubMed ID: 28363519 [TBL] [Abstract][Full Text] [Related]
19. The use of calcium phosphate nanoparticles encapsulating Toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Sokolova V; Knuschke T; Kovtun A; Buer J; Epple M; Westendorf AM Biomaterials; 2010 Jul; 31(21):5627-33. PubMed ID: 20417963 [TBL] [Abstract][Full Text] [Related]