These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28552918)

  • 1. DMA analysis of the structure of crosslinked poly(methyl methacrylate)s.
    Barszczewska-Rybarek IM; Korytkowska-Wałach A; Kurcok M; Chladek G; Kasperski J
    Acta Bioeng Biomech; 2017; 19(1):47-53. PubMed ID: 28552918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing mechanical properties of an injectable two-solution acrylic bone cement using a difunctional crosslinker.
    Wiegand MJ; Faraci KL; Reed BE; Hasenwinkel JM
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):783-790. PubMed ID: 30184331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological properties of PMMA bone cements during curing.
    Farrar DF; Rose J
    Biomaterials; 2001 Nov; 22(22):3005-13. PubMed ID: 11575475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cross-linked PMMA beads on the mechanical behavior of self-curing acrylic cements.
    Vallo CI; Abraham GA; Cuadrado TR; San Román J
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):407-16. PubMed ID: 15264326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating.
    Yi M; Sun H; Zhang H; Deng X; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():742-9. PubMed ID: 26478367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of processing conditions on the properties of poly(methyl methacrylate) fibers.
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 2002; 63(2):152-60. PubMed ID: 11870648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement.
    Puska MA; Närhi TO; Aho AJ; Yli-Urpo A; Vallittu PK
    J Mater Sci Mater Med; 2004 Sep; 15(9):1037-43. PubMed ID: 15448412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerization development of "low-shrink" resin composites: Reaction kinetics, polymerization stress and quality of network.
    Yamasaki LC; De Vito Moraes AG; Barros M; Lewis S; Francci C; Stansbury JW; Pfeifer CS
    Dent Mater; 2013 Sep; 29(9):e169-79. PubMed ID: 23849746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress relaxation modelling of polymethylmethacrylate bone cement.
    Eden OR; Lee AJ; Hooper RM
    Proc Inst Mech Eng H; 2002; 216(3):195-9. PubMed ID: 12137286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent.
    Khaled SM; Sui R; Charpentier PA; Rizkalla AS
    Langmuir; 2007 Mar; 23(7):3988-95. PubMed ID: 17316031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy.
    N'Diaye M; Pascaretti-Grizon F; Massin P; Baslé MF; Chappard D
    Langmuir; 2012 Aug; 28(31):11609-14. PubMed ID: 22799564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: perspectives for medical application.
    Linan LZ; Nascimento Lima NM; Filho RM; Sabino MA; Kozlowski MT; Manenti F
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():107-16. PubMed ID: 25842114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving bone cement toughness and contrast agent confinement by using acrylic branched polymers.
    Lissarrague MH; Fascio ML; Goyanes S; D'Accorso NB
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():901-908. PubMed ID: 26652446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on modelling of PMMA bone cement polymerisation.
    Stańczyk M
    J Biomech; 2005 Jul; 38(7):1397-403. PubMed ID: 15922750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of daptomycin-loaded antibiotic cement.
    Kaplan L; Kurdziel M; Baker KC; Verner J
    Orthopedics; 2012 Apr; 35(4):e503-9. PubMed ID: 22495850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the small-punch test as a technique for characterizing the mechanical properties of acrylic bone cement.
    Dunne NJ; Leonard D; Daly C; Buchanan FJ; Orr JF
    Proc Inst Mech Eng H; 2006 Jan; 220(1):11-21. PubMed ID: 16459442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(methyl-methacrylate) nanocomposites with low silica addition.
    Balos S; Pilic B; Markovic D; Pavlicevic J; Luzanin O
    J Prosthet Dent; 2014 Apr; 111(4):327-34. PubMed ID: 24360017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessments of antibacterial and physico-mechanical properties for dental materials with chemically anchored quaternary ammonium moieties: thiol-ene-methacrylate vs. conventional methacrylate system.
    Beigi Burujeny S; Atai M; Yeganeh H
    Dent Mater; 2015 Mar; 31(3):244-61. PubMed ID: 25605414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.