These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28552935)

  • 21. A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: the paradigm of glioblastoma multiforme treated by temozolomide.
    Stamatakos GS; Antipas VP; Uzunoglu NK
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1467-77. PubMed ID: 16916081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity.
    Wang S; Schattler H
    Math Biosci Eng; 2016 Dec; 13(6):1223-1240. PubMed ID: 27775377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An optimal dynamic inversion-based neuro-adaptive approach for treatment of chronic myelogenous leukemia.
    Padhi R; Kothari M
    Comput Methods Programs Biomed; 2007 Sep; 87(3):208-24. PubMed ID: 17618012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On assessing quality of therapy in non-linear distributed mathematical models for brain tumor growth dynamics.
    Bratus AS; Fimmel E; Kovalenko SY
    Math Biosci; 2014 Feb; 248():88-96. PubMed ID: 24384228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance.
    Clairambault J
    Adv Drug Deliv Rev; 2007 Aug; 59(9-10):1054-68. PubMed ID: 17707544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function.
    Engelhart M; Lebiedz D; Sager S
    Math Biosci; 2011 Jan; 229(1):123-34. PubMed ID: 21129386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal chemotherapy: a case study with drug resistance, saturation effect, and toxicity.
    Costa MI; Boldrini JL; Bassanezi RC
    IMA J Math Appl Med Biol; 1994; 11(1):45-59. PubMed ID: 8057040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some optimal control problems in cancer chemotherapy with a toxicity limit.
    Murray JM
    Math Biosci; 1990 Jun; 100(1):49-67. PubMed ID: 2134468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal policies of non-cross-resistant chemotherapy on Goldie and Coldman's cancer model.
    Chen JH; Kuo YH; Luh HP
    Math Biosci; 2013 Oct; 245(2):282-98. PubMed ID: 23927854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal drug regimens in cancer chemotherapy: a multi-objective approach.
    Batmani Y; Khaloozadeh H
    Comput Biol Med; 2013 Dec; 43(12):2089-95. PubMed ID: 24290925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of vascular-targeting drugs in a computational model of tumor growth.
    Gevertz J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041914. PubMed ID: 22680505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conflicting objectives in chemotherapy with drug resistance.
    Costa MI; Boldrini JL
    Bull Math Biol; 1997 Jul; 59(4):707-24. PubMed ID: 9214850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A step toward optimization of cancer therapeutics. Physiologically based modeling of circadian control on cell proliferation.
    Clairambault J
    IEEE Eng Med Biol Mag; 2008; 27(1):20-4. PubMed ID: 18270046
    [No Abstract]   [Full Text] [Related]  

  • 34. Tumor cells proliferation and migration under the influence of their microenvironment.
    Friedman A; Kim Y
    Math Biosci Eng; 2011 Apr; 8(2):371-83. PubMed ID: 21631135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voreloxin, formerly SNS-595, has potent activity against a broad panel of cancer cell lines and in vivo tumor models.
    Hoch U; Lynch J; Sato Y; Kashimoto S; Kajikawa F; Furutani Y; Silverman JA
    Cancer Chemother Pharmacol; 2009 Jun; 64(1):53-65. PubMed ID: 18931998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis.
    Ledzewicz U; Schättler H
    J Theor Biol; 2008 May; 252(2):295-312. PubMed ID: 18371982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal control analysis of a cancer chemotherapy problem.
    Swan GW
    IMA J Math Appl Med Biol; 1987; 4(2):171-84. PubMed ID: 3503092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal chemotherapy regimens: influence of tumours on normal cells and several toxicity constraints.
    Matveev AS; Savkin AV
    IMA J Math Appl Med Biol; 2001 Mar; 18(1):25-40. PubMed ID: 11339336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model.
    Florian JA; Eiseman JL; Parker RS
    Comput Biol Med; 2008 Mar; 38(3):339-47. PubMed ID: 18222419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal control for a cancer chemotherapy problem with general growth and loss functions.
    Murray JM
    Math Biosci; 1990 Mar; 98(2):273-87. PubMed ID: 2134507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.