These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28552940)

  • 21. Exploring local and non-local interactions for protein stability by structural motif engineering.
    Niggemann M; Steipe B
    J Mol Biol; 2000 Feb; 296(1):181-95. PubMed ID: 10656826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid search for tertiary fragments reveals protein sequence-structure relationships.
    Zhou J; Grigoryan G
    Protein Sci; 2015 Apr; 24(4):508-24. PubMed ID: 25420575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying tandem Ankyrin repeats in protein structures.
    Chakrabarty B; Parekh N
    BMC Bioinformatics; 2014 Dec; 15(1):6599. PubMed ID: 25547411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods.
    Eisenhaber F; Imperiale F; Argos P; Frömmel C
    Proteins; 1996 Jun; 25(2):157-68. PubMed ID: 8811732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-conditioned amino-acid couplings: How contact geometry affects pairwise sequence preferences.
    Holland J; Grigoryan G
    Protein Sci; 2022 Apr; 31(4):900-917. PubMed ID: 35060221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining tertiary structural motifs for assessment of designability.
    Zhang J; Grigoryan G
    Methods Enzymol; 2013; 523():21-40. PubMed ID: 23422424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-structure mapping errors in the PDB: OB-fold domains.
    Venclovas C; Ginalski K; Kang C
    Protein Sci; 2004 Jun; 13(6):1594-602. PubMed ID: 15133161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of similar regions of protein structures using integrated sequence and structure analysis tools.
    Peters B; Moad C; Youn E; Buffington K; Heiland R; Mooney S
    BMC Struct Biol; 2006 Mar; 6():4. PubMed ID: 16526955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. R3D-BLAST2: an improved search tool for similar RNA 3D substructures.
    Yen CY; Lin JC; Chen KT; Lu CL
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):574. PubMed ID: 29297283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matching of structural motifs using hashing on residue labels and geometric filtering for protein function prediction.
    Moll M; Kavraki LE
    Comput Syst Bioinformatics Conf; 2008; 7():157-68. PubMed ID: 19642277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR
    J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Consensus Data Mining secondary structure prediction by combining GOR V and Fragment Database Mining.
    Sen TZ; Cheng H; Kloczkowski A; Jernigan RL
    Protein Sci; 2006 Nov; 15(11):2499-506. PubMed ID: 17001039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning methods for protein structure prediction.
    Cheng J; Tegge AN; Baldi P
    IEEE Rev Biomed Eng; 2008; 1():41-9. PubMed ID: 22274898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D deep convolutional neural networks for amino acid environment similarity analysis.
    Torng W; Altman RB
    BMC Bioinformatics; 2017 Jun; 18(1):302. PubMed ID: 28615003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic database for proteins: features and applications.
    Gromiha MM; Sarai A
    Methods Mol Biol; 2010; 609():97-112. PubMed ID: 20221915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Descriptor-based protein remote homology identification.
    Zhang Z; Kochhar S; Grigorov MG
    Protein Sci; 2005 Feb; 14(2):431-44. PubMed ID: 15632283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.