These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2855296)

  • 1. Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates.
    Aronoff SC
    Antimicrob Agents Chemother; 1988 Nov; 32(11):1636-9. PubMed ID: 2855296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in drug susceptibility between isolates of Pseudomonas cepacia recovered from patients with cystic fibrosis and other sources and its relationship to beta-lactamase focusing pattern.
    Aronoff SC; Labrozzi PH
    Pediatr Pulmonol; 1986; 2(6):368-72. PubMed ID: 3492701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia.
    Parr TR; Moore RA; Moore LV; Hancock RE
    Antimicrob Agents Chemother; 1987 Jan; 31(1):121-3. PubMed ID: 3032087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of porin and beta-lactamase in beta-lactam resistance of Pseudomonas aeruginosa.
    Hancock RE; Woodruff WA
    Rev Infect Dis; 1988; 10(4):770-5. PubMed ID: 2460909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of β-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study.
    Llanes C; Pourcel C; Richardot C; Plésiat P; Fichant G; Cavallo JD; Mérens A;
    J Antimicrob Chemother; 2013 Aug; 68(8):1763-71. PubMed ID: 23629014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH and CO2 on in vitro susceptibility of Pseudomonas cepacia to beta-lactams.
    Corkill JE; Deveney J; Pratt J; Shears P; Smyth A; Heaf D; Hart CA
    Pediatr Res; 1994 Mar; 35(3):299-302. PubMed ID: 7514780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein.
    Burns JL; Clark DK
    Antimicrob Agents Chemother; 1992 Oct; 36(10):2280-5. PubMed ID: 1280056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of cross-resistance to imipenem and other beta-lactam antibiotics in Pseudomonas aeruginosa during therapy.
    Pagani L; Landini P; Luzzaro F; Debiaggi M; Romero E
    Microbiologica; 1990 Jan; 13(1):43-53. PubMed ID: 2155376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derepressed beta-lactamase production as a mediator of high-level beta-lactam resistance in Pseudomonas cepacia.
    Aronoff SC
    Pediatr Pulmonol; 1988; 4(2):72-7. PubMed ID: 3260021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration in expression of Serratia marcescens porins associated with decreased outer membrane permeability.
    Hashizume T; Sanada M; Nakagawa S; Tanaka N
    J Antimicrob Chemother; 1993 Jan; 31(1):21-8. PubMed ID: 8444671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outer membrane permeability and beta-lactamase content in Pseudomonas maltophilia clinical isolates and laboratory mutants.
    Mett H; Rosta S; Schacher B; Frei R
    Rev Infect Dis; 1988; 10(4):765-9. PubMed ID: 3263685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum IgG antibody to outer membrane antigens of Pseudomonas cepacia and Pseudomonas aeruginosa in cystic fibrosis.
    Aronoff SC; Stern RC
    J Infect Dis; 1988 May; 157(5):934-40. PubMed ID: 2452219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-lactam resistant Pseudomonas aeruginosa strains emerging during therapy: synergistic resistance mechanisms.
    Pagani L; Debiaggi M; Tenni R; Cereda PM; Landini P; Romero E
    Microbiologica; 1988 Jan; 11(1):47-53. PubMed ID: 2832709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae.
    Rocker A; Lacey JA; Belousoff MJ; Wilksch JJ; Strugnell RA; Davies MR; Lithgow T
    mBio; 2020 Apr; 11(2):. PubMed ID: 32291303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of efflux pumps: MexAB-OprM and MexXY(-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients.
    Aghazadeh M; Hojabri Z; Mahdian R; Nahaei MR; Rahmati M; Hojabri T; Pirzadeh T; Pajand O
    Infect Genet Evol; 2014 Jun; 24():187-92. PubMed ID: 24694825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and genetic resistance traits of Pseudomonas aeruginosa strains infecting cystic fibrosis patients: A French cohort study.
    Courtois N; Caspar Y; Maurin M
    Int J Antimicrob Agents; 2018 Sep; 52(3):358-364. PubMed ID: 29775685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of porin and lipopolysaccharide antigens on a Pseudomonas aeruginosa permeability mutant.
    Godfrey AJ; Shahrabadi MS; Bryan LE
    Antimicrob Agents Chemother; 1986 Nov; 30(5):802-5. PubMed ID: 3026242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penetration of beta-lactams through Pseudomonas aeruginosa porin channels.
    Godfrey AJ; Bryan LE
    Antimicrob Agents Chemother; 1987 Aug; 31(8):1216-21. PubMed ID: 2443074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of resistance to beta-lactam antibiotics in Acinetobacter calcoaceticus.
    Obara M; Nakae T
    J Antimicrob Chemother; 1991 Dec; 28(6):791-800. PubMed ID: 1816177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-resistance isolates possessing characteristics of both Burkholderia (Pseudomonas) cepacia and Burkholderia gladioli from patients with cystic fibrosis.
    Simpson IN; Finlay J; Winstanley DJ; Dewhurst N; Nelson JW; Butler SL; Govan JR
    J Antimicrob Chemother; 1994 Sep; 34(3):353-61. PubMed ID: 7530242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.