These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28553009)

  • 1. A novel strategy to escape a poor habitat: red-necked grebes transfer flightless young to other ponds.
    Kloskowski J; Frączek K
    Acta Ethol; 2017; 20(2):191-195. PubMed ID: 28553009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Win-stay/lose-switch, prospecting-based settlement strategy may not be adaptive under rapid environmental change.
    Kloskowski J
    Sci Rep; 2021 Jan; 11(1):570. PubMed ID: 33436762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of the size structure of fish populations for their effects on a generalist avian predator.
    Kloskowski J
    Oecologia; 2011 Jun; 166(2):517-30. PubMed ID: 21153742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals and selenium in grebe feathers from Agassiz National Wildlife Refuge in northern Minnesota.
    Burger J; Eichhorst B
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):442-9. PubMed ID: 17657451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Habitat selection by breeding waterbirds at ponds with size-structured fish populations.
    Kloskowski J; Nieoczym M; Polak M; Pitucha P
    Naturwissenschaften; 2010 Jul; 97(7):673-82. PubMed ID: 20532472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metals and selenium in grebe eggs from Agassiz National Wildlife Refuge in northern Minnesota.
    Burger J; Eichhorst B
    Environ Monit Assess; 2005 Aug; 107(1-3):285-95. PubMed ID: 16418918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organochlorine contaminants and eggshell thinning in grebes from prairie Canada.
    Forsyth DJ; Martin PA; De Smet KD; Riske ME
    Environ Pollut; 1994; 85(1):51-8. PubMed ID: 15091684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of type A influenza viruses from Red-necked Grebes (Podiceps grisegena).
    Lebarbenchon C; Wilcox BR; Poulson RL; Slusher MJ; Fedorova NB; Katzel DA; Cardona CJ; Knutsen GA; Wentworth DE; Stallknecht DE
    J Wildl Dis; 2015 Jan; 51(1):290-3. PubMed ID: 25380358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive food exploitation of smelt Osmerus eperlanus by great crested grebes Podiceps cristatus and perch Perca fluviatilis at Lake IJsselmeer, The Netherlands.
    van Eerden MR; Piersma T; Lindeboom R
    Oecologia; 1993 Apr; 93(4):463-474. PubMed ID: 28313813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure of black-necked grebes (Podiceps nigricollis) to metal pollution during the moulting period in the Odiel Marshes, Southwest Spain.
    Rodríguez-Estival J; Sánchez MI; Ramo C; Varo N; Amat JA; Garrido-Fernández J; Hornero-Méndez D; Ortiz-Santaliestra ME; Taggart MA; Martinez-Haro M; Green AJ; Mateo R
    Chemosphere; 2019 Feb; 216():774-784. PubMed ID: 30391900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of microsatellite loci for red-necked grebes Podiceps grisegena.
    Sachs JL; Hughes CR
    Mol Ecol; 1999 Apr; 8(4):687-8. PubMed ID: 10327663
    [No Abstract]   [Full Text] [Related]  

  • 12. Inorganic Contaminants, Nutrient Reserves and Molt Intensity in Autumn Migrant Red-Necked Grebes (Podiceps grisegena) at Georgian Bay.
    Holman KL; Schummer ML; Petrie SA; Chen YW; Belzile N
    Arch Environ Contam Toxicol; 2015 Nov; 69(4):399-410. PubMed ID: 26250452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life history differences influence the impacts of drought on two pond-breeding salamanders.
    Anderson TL; Ousterhout BH; Peterman WE; Drake DL; Semlitsch RD
    Ecol Appl; 2015 Oct; 25(7):1896-910. PubMed ID: 26591455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. We Made Your Bed, Why Won't You Lie in It? Food Availability and Disease May Affect Reproductive Output of Reintroduced Frogs.
    Klop-Toker K; Valdez J; Stockwell M; Fardell L; Clulow S; Clulow J; Mahony M
    PLoS One; 2016; 11(7):e0159143. PubMed ID: 27463095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological constraints on breeding system evolution: the influence of habitat on brood desertion in Kentish plover.
    Kosztolányi A; Székely T; Cuthill IC; Yilmaz KT; Berberoglu S
    J Anim Ecol; 2006 Jan; 75(1):257-65. PubMed ID: 16903063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Managing farm ponds as breeding sites for amphibians: key trade-offs in agricultural function and habitat conservation.
    Swartz TM; Miller JR
    Ecol Appl; 2019 Oct; 29(7):e01964. PubMed ID: 31243830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Land-use change increases climatic vulnerability of migratory birds: Insights from integrated population modelling.
    Zhao Q; Arnold TW; Devries JH; Howerter DW; Clark RG; Weegman MD
    J Anim Ecol; 2019 Oct; 88(10):1625-1637. PubMed ID: 31173349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury exposure and reproduction in fish-eating birds breeding in the Pinchi Lake region, British Columbia, Canada.
    Weech SA; Scheuhammer AM; Elliott JE
    Environ Toxicol Chem; 2006 May; 25(5):1433-40. PubMed ID: 16704079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation.
    Lima SL
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):485-513. PubMed ID: 19659887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho.
    Rattray GW
    J Environ Manage; 2017 Dec; 203(Pt 1):578-591. PubMed ID: 28285803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.