These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28553198)

  • 1. A Resilient, Non-neuronal Source of the Spatiotemporal Lag Structure Detected by BOLD Signal-Based Blood Flow Tracking.
    Aso T; Jiang G; Urayama SI; Fukuyama H
    Front Neurosci; 2017; 11():256. PubMed ID: 28553198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals.
    Aso T; Urayama S; Fukuyama H; Murai T
    PLoS One; 2019; 14(9):e0222787. PubMed ID: 31545839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the Time Lag Phenomenon and the Global Signal in Resting-State fMRI.
    Amemiya S; Takao H; Abe O
    Front Neurosci; 2020; 14():596084. PubMed ID: 33250709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.
    Cohen AD; Nencka AS; Lebel RM; Wang Y
    PLoS One; 2017; 12(3):e0169253. PubMed ID: 28253268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separating neuronal activity and systemic low-frequency oscillation related BOLD responses at nodes of the default mode network during resting-state fMRI with multiband excitation echo-planar imaging.
    Tachibana A; Ikoma Y; Hirano Y; Kershaw J; Obata T
    Front Neurosci; 2022; 16():961686. PubMed ID: 36213741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion information extracted from resting state functional magnetic resonance imaging.
    Tong Y; Lindsey KP; Hocke LM; Vitaliano G; Mintzopoulos D; Frederick BD
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):564-576. PubMed ID: 26873885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors.
    Pillai JJ; Zacà D
    Technol Cancer Res Treat; 2012 Aug; 11(4):361-74. PubMed ID: 22376130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can apparent resting state connectivity arise from systemic fluctuations?
    Tong Y; Hocke LM; Fan X; Janes AC; Frederick Bd
    Front Hum Neurosci; 2015; 9():285. PubMed ID: 26029095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiband multi-echo simultaneous ASL/BOLD for task-induced functional MRI.
    Cohen AD; Nencka AS; Wang Y
    PLoS One; 2018; 13(2):e0190427. PubMed ID: 29389985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.
    Pinto J; Jorge J; Sousa I; Vilela P; Figueiredo P
    Neuroimage; 2016 Jul; 135():223-31. PubMed ID: 26908316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular effects of caffeine found in BOLD fMRI.
    Yang HS; Liang Z; Yao JF; Shen X; Frederick BD; Tong Y
    J Neurosci Res; 2019 Apr; 97(4):456-466. PubMed ID: 30488978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation.
    Aamand R; Dalsgaard T; Ho YC; Møller A; Roepstorff A; Lund TE
    Neuroimage; 2013 Dec; 83():397-407. PubMed ID: 23827330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.
    Belaïch R; Boujraf S; Benzagmout M; Magoul R; Maaroufi M; Tizniti S
    Nutr Neurosci; 2017 Nov; 20(9):505-512. PubMed ID: 27276372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.
    Tak S; Polimeni JR; Wang DJ; Yan L; Chen JJ
    Brain Connect; 2015 Apr; 5(3):137-46. PubMed ID: 25384681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invalidation of fMRI experiments secondary to neurovascular uncoupling in patients with cerebrovascular disease.
    Para AE; Sam K; Poublanc J; Fisher JA; Crawley AP; Mikulis DJ
    J Magn Reson Imaging; 2017 Nov; 46(5):1448-1455. PubMed ID: 28152241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR
    Huber L; Uludağ K; Möller HE
    Neuroimage; 2019 Aug; 197():742-760. PubMed ID: 28736310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic Low-Frequency Oscillations in BOLD Signal Vary with Tissue Type.
    Tong Y; Hocke LM; Lindsey KP; Erdoğan SB; Vitaliano G; Caine CE; Frederick Bd
    Front Neurosci; 2016; 10():313. PubMed ID: 27445680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Component structure of event-related fMRI responses in the different neurovascular compartments.
    Roberts KC; Tran TT; Song AW; Woldorff MG
    Magn Reson Imaging; 2007 Apr; 25(3):328-34. PubMed ID: 17371721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Echo Time Shifts and Temporal Signal Fluctuations on BOLD Sensitivity in Presurgical Planning at 7 T.
    Dymerska B; De Lima Cardoso P; Bachrata B; Fischmeister F; Matt E; Beisteiner R; Trattnig S; Robinson SD
    Invest Radiol; 2019 Jun; 54(6):340-348. PubMed ID: 30724813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.