These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28553200)

  • 1. Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity.
    Crea S; Cempini M; Mazzoleni S; Carrozza MC; Posteraro F; Vitiello N
    Front Neurosci; 2017; 11():261. PubMed ID: 28553200
    [No Abstract]   [Full Text] [Related]  

  • 2. Robotic Rehabilitation and Multimodal Instrumented Assessment of Post-stroke Elbow Motor Functions-A Randomized Controlled Trial Protocol.
    Pilla A; Trigili E; McKinney Z; Fanciullacci C; Malasoma C; Posteraro F; Crea S; Vitiello N
    Front Neurol; 2020; 11():587293. PubMed ID: 33193052
    [No Abstract]   [Full Text] [Related]  

  • 3. Technologically-advanced assessment of upper-limb spasticity: a pilot study.
    Posteraro F; Crea S; Mazzoleni S; Berteanu M; Ciobanu I; Vitiello N; Cempini M; Gervasio S; Mrachacz-Kersting N
    Eur J Phys Rehabil Med; 2018 Aug; 54(4):536-544. PubMed ID: 28870058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KAPS (kinematic assessment of passive stretch): a tool to assess elbow flexor and extensor spasticity after stroke using a robotic exoskeleton.
    Centen A; Lowrey CR; Scott SH; Yeh TT; Mochizuki G
    J Neuroeng Rehabil; 2017 Jun; 14(1):59. PubMed ID: 28629415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists.
    Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical examination of a commonly used measure of spasticity.
    Pandyan AD; Price CI; Rodgers H; Barnes MP; Johnson GR
    Clin Biomech (Bristol, Avon); 2001 Dec; 16(10):859-65. PubMed ID: 11733123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation.
    Cempini M; Giovacchini F; Vitiello N; Cortese M; Moisé M; Posteraro F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():342-5. PubMed ID: 24109694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton.
    Mochizuki G; Centen A; Resnick M; Lowrey C; Dukelow SP; Scott SH
    J Neuroeng Rehabil; 2019 Nov; 16(1):146. PubMed ID: 31753011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study.
    Pennati GV; Da Re C; Messineo I; Bonaiuti D
    Eur J Phys Rehabil Med; 2015 Aug; 51(4):381-7. PubMed ID: 25358636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normalization factor for the assessment of elbow spasticity with passive stretch measurement: maximum torque VS. body weight.
    Wang L; Guo X; Samuel OW; Huang P; Wang H; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():388-391. PubMed ID: 30440416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.
    Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R
    Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of biomechanical spasticity measurements at the elbow of people poststroke.
    Starsky AJ; Sangani SG; McGuire JR; Logan B; Schmit BD
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1648-54. PubMed ID: 16084821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Stretching of Spastic Elbow Under Intelligent Control in Chronic Stroke Survivors-A Pilot Study.
    Rao S; Huang M; Chung SG; Zhang LQ
    Front Neurol; 2021; 12():742260. PubMed ID: 34970204
    [No Abstract]   [Full Text] [Related]  

  • 18. Stretch reflex adaptation in elbow flexors during repeated passive movements in unilateral brain-injured patients.
    Schmit BD; Dewald JP; Rymer WZ
    Arch Phys Med Rehabil; 2000 Mar; 81(3):269-78. PubMed ID: 10724069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback.
    Tamburella F; Moreno JC; Herrera Valenzuela DS; Pisotta I; Iosa M; Cincotti F; Mattia D; Pons JL; Molinari M
    J Neuroeng Rehabil; 2019 Jul; 16(1):95. PubMed ID: 31337400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a single device to quantify motor impairments of the elbow: proof of concept.
    van der Velden LL; Onneweer B; Haarman CJW; Benner JL; Roebroeck ME; Ribbers GM; Selles RW
    J Neuroeng Rehabil; 2022 Jul; 19(1):77. PubMed ID: 35864498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.