These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 28553474)
1. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot Ustarroz J; Kang M; Bullions E; Unwin PR Chem Sci; 2017 Mar; 8(3):1841-1853. PubMed ID: 28553474 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical Detection and Analysis of Various Current Responses of a Single Ag Nanoparticle Collision in an Alkaline Electrolyte Solution. Kim KJ; Kwon SJ Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806475 [TBL] [Abstract][Full Text] [Related]
3. The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles. Lemineur JF; Noël JM; Combellas C; Ausserré D; Kanoufi F Faraday Discuss; 2018 Oct; 210(0):381-395. PubMed ID: 29975385 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Yang X; Gondikas AP; Marinakos SM; Auffan M; Liu J; Hsu-Kim H; Meyer JN Environ Sci Technol; 2012 Jan; 46(2):1119-27. PubMed ID: 22148238 [TBL] [Abstract][Full Text] [Related]
5. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications. Maurer EI; Sharma M; Schlager JJ; Hussain SM Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466 [TBL] [Abstract][Full Text] [Related]
6. Single Oxidative Collision Events of Silver Nanoparticles: Understanding the Rate-Determining Chemistry. Ngamchuea K; Clark ROD; Sokolov SV; Young NP; Batchelor-McAuley C; Compton RG Chemistry; 2017 Nov; 23(63):16085-16096. PubMed ID: 28922508 [TBL] [Abstract][Full Text] [Related]
7. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related]
8. Electrochemistry at One Nanoparticle. Mirkin MV; Sun T; Yu Y; Zhou M Acc Chem Res; 2016 Oct; 49(10):2328-2335. PubMed ID: 27626289 [TBL] [Abstract][Full Text] [Related]
9. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Odzak N; Kistler D; Sigg L Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184 [TBL] [Abstract][Full Text] [Related]
10. Time-Resolved Detection and Analysis of Single Nanoparticle Electrocatalytic Impacts. Kang M; Perry D; Kim YR; Colburn AW; Lazenby RA; Unwin PR J Am Chem Soc; 2015 Sep; 137(34):10902-5. PubMed ID: 26264494 [TBL] [Abstract][Full Text] [Related]
11. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions. Mun SK; Lee S; Kim DY; Kwon SJ Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286 [TBL] [Abstract][Full Text] [Related]
12. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles. Masitas RA; Khachian IV; Bill BL; Zamborini FP Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111 [TBL] [Abstract][Full Text] [Related]
13. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode. Defnet PA; Zhang B J Am Chem Soc; 2021 Oct; 143(39):16154-16162. PubMed ID: 34549950 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution. Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882 [TBL] [Abstract][Full Text] [Related]
15. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Lee KJ; Browning LM; Nallathamby PD; Xu XH Chem Res Toxicol; 2013 Jun; 26(6):904-17. PubMed ID: 23621491 [TBL] [Abstract][Full Text] [Related]
16. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Radniecki TS; Stankus DP; Neigh A; Nason JA; Semprini L Chemosphere; 2011 Sep; 85(1):43-9. PubMed ID: 21757219 [TBL] [Abstract][Full Text] [Related]
17. Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen. Treshchalov A; Erikson H; Puust L; Tsarenko S; Saar R; Vanetsev A; Tammeveski K; Sildos I J Colloid Interface Sci; 2017 Apr; 491():358-366. PubMed ID: 28056445 [TBL] [Abstract][Full Text] [Related]
18. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Peretyazhko TS; Zhang Q; Colvin VL Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical solid-state phase transformations of silver nanoparticles. Singh P; Parent KL; Buttry DA J Am Chem Soc; 2012 Mar; 134(12):5610-7. PubMed ID: 22385520 [TBL] [Abstract][Full Text] [Related]
20. Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag Yin T; Han T; Li C; Qin W; Bobacka J Anal Chim Acta; 2020 Mar; 1101():50-57. PubMed ID: 32029118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]