These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28553712)

  • 21. Cucurbit[8]uril-based supramolecular polymers.
    Liu Y; Yang H; Wang Z; Zhang X
    Chem Asian J; 2013 Aug; 8(8):1626-32. PubMed ID: 23589513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-healing and shape memory functions exhibited by supramolecular liquid-crystalline networks formed by combination of hydrogen bonding interactions and coordination bonding.
    Uchida J; Yoshio M; Kato T
    Chem Sci; 2021 Mar; 12(17):6091-6098. PubMed ID: 33996005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water.
    Zhang B; DeBartolo JE; Song J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gradient Polydopamine Coating: A Simple and General Strategy toward Multishape Memory Effects.
    Wei Y; Qi X; He S; Deng S; Liu D; Fu Q
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32922-32934. PubMed ID: 30168310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.
    Lin T; Tang Z; Guo B
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21060-8. PubMed ID: 25389952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications.
    Hu QD; Tang GP; Chu PK
    Acc Chem Res; 2014 Jul; 47(7):2017-25. PubMed ID: 24873201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supramolecular hydrogels: synthesis, properties and their biomedical applications.
    Dong R; Pang Y; Su Y; Zhu X
    Biomater Sci; 2015 Jul; 3(7):937-54. PubMed ID: 26221932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.
    Pekkanen AM; Mondschein RJ; Williams CB; Long TE
    Biomacromolecules; 2017 Sep; 18(9):2669-2687. PubMed ID: 28762718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New Scalable Approach toward Shape Memory Polymer Composites via "Spring-Buckle" Microstructure Design.
    Wu X; Han Y; Zhou Z; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13657-13665. PubMed ID: 28358194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable Shape Changing and Tristability of Bilayer Composite.
    Wang L; Wang D; Huang S; Guo X; Wan G; Fan J; Chen Z
    ACS Appl Mater Interfaces; 2019 May; 11(18):16881-16887. PubMed ID: 30983314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced supramolecular polymers constructed by orthogonal self-assembly.
    Li SL; Xiao T; Lin C; Wang L
    Chem Soc Rev; 2012 Sep; 41(18):5950-68. PubMed ID: 22773054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable polymer multi-shape memory effect.
    Xie T
    Nature; 2010 Mar; 464(7286):267-70. PubMed ID: 20220846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretchable supramolecular hydrogels with triple shape memory effect.
    Le X; Lu W; Zheng J; Tong D; Zhao N; Ma C; Xiao H; Zhang J; Huang Y; Chen T
    Chem Sci; 2016 Nov; 7(11):6715-6720. PubMed ID: 28451115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape-morphing composites with designed micro-architectures.
    Rodriguez JN; Zhu C; Duoss EB; Wilson TS; Spadaccini CM; Lewicki JP
    Sci Rep; 2016 Jun; 6():27933. PubMed ID: 27301435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-Highly Stiff and Tough Shape Memory Polyurea with Unprecedented Energy Density by Precise Slight Cross-Linking.
    Chen J; Wang Z; Yao B; Geng Y; Wang C; Xu J; Chen T; Jing J; Fu J
    Adv Mater; 2024 Jul; 36(27):e2401178. PubMed ID: 38648568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-based supramolecular polymers: progress and prospect.
    Luo Q; Dong Z; Hou C; Liu J
    Chem Commun (Camb); 2014 Sep; 50(70):9997-10007. PubMed ID: 25005829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review of Progress in Shape Memory Epoxies and Their Composites.
    Karger-Kocsis J; Kéki S
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction.
    Lin T; Ma S; Lu Y; Guo B
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5695-703. PubMed ID: 24673791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vitrimer-Like Shape Memory Polymers: Characterization and Applications in Reshaping and Manufacturing.
    Wang TX; Chen HM; Salvekar AV; Lim J; Chen Y; Xiao R; Huang WM
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33053813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.