These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 28553739)
1. Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus. Chew KS; Fernandez DC; Hattar S; Südhof TC; Martinelli DC J Biol Rhythms; 2017 Jun; 32(3):222-236. PubMed ID: 28553739 [TBL] [Abstract][Full Text] [Related]
2. Expression of C1ql3 in Discrete Neuronal Populations Controls Efferent Synapse Numbers and Diverse Behaviors. Martinelli DC; Chew KS; Rohlmann A; Lum MY; Ressl S; Hattar S; Brunger AT; Missler M; Südhof TC Neuron; 2016 Sep; 91(5):1034-1051. PubMed ID: 27478018 [TBL] [Abstract][Full Text] [Related]
3. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System. Jones JR; Simon T; Lones L; Herzog ED J Neurosci; 2018 Sep; 38(37):7986-7995. PubMed ID: 30082421 [TBL] [Abstract][Full Text] [Related]
4. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus. Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125 [TBL] [Abstract][Full Text] [Related]
5. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins. Maywood ES; Chesham JE; Smyllie NJ; Hastings MH J Biol Rhythms; 2014 Apr; 29(2):110-8. PubMed ID: 24682205 [TBL] [Abstract][Full Text] [Related]
6. Abnormal Photic Entrainment to Phase-Delaying Stimuli in the R6/2 Mouse Model of Huntington's Disease, despite Retinal Responsiveness to Light. Ouk K; Aungier J; Ware M; Morton AJ eNeuro; 2019; 6(6):. PubMed ID: 31744839 [TBL] [Abstract][Full Text] [Related]
7. Plasticity of Light-induced Concurrent Glutamatergic and GABAergic Quantal Events in the Suprachiasmatic Nucleus. Cheng J; Huang X; Liang Y; Xue T; Wang L; Bao J J Biol Rhythms; 2018 Feb; 33(1):65-75. PubMed ID: 29432701 [TBL] [Abstract][Full Text] [Related]
8. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling. Evans JA; Pan H; Liu AC; Welsh DK J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370 [TBL] [Abstract][Full Text] [Related]
9. Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles. Aton SJ; Block GD; Tei H; Yamazaki S; Herzog ED J Biol Rhythms; 2004 Jun; 19(3):198-207. PubMed ID: 15155006 [TBL] [Abstract][Full Text] [Related]
11. The Excitatory Effects of GABA within the Suprachiasmatic Nucleus: Regulation of Na-K-2Cl Cotransporters (NKCCs) by Environmental Lighting Conditions. McNeill JK; Walton JC; Ryu V; Albers HE J Biol Rhythms; 2020 Jun; 35(3):275-286. PubMed ID: 32406304 [TBL] [Abstract][Full Text] [Related]
12. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK eNeuro; 2017; 4(4):. PubMed ID: 28828400 [TBL] [Abstract][Full Text] [Related]
13. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor. Hughes AT; Fahey B; Cutler DJ; Coogan AN; Piggins HD J Neurosci; 2004 Apr; 24(14):3522-6. PubMed ID: 15071099 [TBL] [Abstract][Full Text] [Related]
14. Effects of vasoactive intestinal peptide genotype on circadian gene expression in the suprachiasmatic nucleus and peripheral organs. Loh DH; Dragich JM; Kudo T; Schroeder AM; Nakamura TJ; Waschek JA; Block GD; Colwell CS J Biol Rhythms; 2011 Jun; 26(3):200-9. PubMed ID: 21628547 [TBL] [Abstract][Full Text] [Related]
15. Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein Six6. Clark DD; Gorman MR; Hatori M; Meadows JD; Panda S; Mellon PL J Biol Rhythms; 2013 Feb; 28(1):15-25. PubMed ID: 23382588 [TBL] [Abstract][Full Text] [Related]
16. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. An S; Harang R; Meeker K; Granados-Fuentes D; Tsai CA; Mazuski C; Kim J; Doyle FJ; Petzold LR; Herzog ED Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4355-61. PubMed ID: 24167276 [TBL] [Abstract][Full Text] [Related]
17. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag. Yamaguchi Y Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320 [TBL] [Abstract][Full Text] [Related]
18. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Polidarová L; Sládek M; Novosadová Z; Sumová A Chronobiol Int; 2017; 34(1):105-117. PubMed ID: 27791401 [TBL] [Abstract][Full Text] [Related]
19. Distinct phase relationships between suprachiasmatic molecular rhythms, cerebral cortex molecular rhythms, and behavioral rhythms in early runner (CAST/EiJ) and nocturnal (C57BL/6J) mice. Jiang P; Franklin KM; Duncan MJ; O'Hara BF; Wisor JP Sleep; 2012 Oct; 35(10):1385-94. PubMed ID: 23024437 [TBL] [Abstract][Full Text] [Related]
20. In vivo monitoring of multi-unit neural activity in the suprachiasmatic nucleus reveals robust circadian rhythms in Period1⁻/⁻ mice. Takasu NN; Pendergast JS; Olivas CS; Yamazaki S; Nakamura W PLoS One; 2013; 8(5):e64333. PubMed ID: 23717599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]