These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28554025)

  • 1. Assessing the toxicity of ionic liquids - Application of the critical membrane concentration approach.
    Bittermann K; Goss KU
    Chemosphere; 2017 Sep; 183():410-418. PubMed ID: 28554025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Phospholipid-Water Partition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMOmic.
    Bittermann K; Spycher S; Endo S; Pohler L; Huniar U; Goss KU; Klamt A
    J Phys Chem B; 2014 Dec; 118(51):14833-42. PubMed ID: 25459490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable toxicity of ionic liquid-forming chemicals to Lemna minor and the influence of dissolved organic matter.
    Larson JH; Frost PC; Lamberti GA
    Environ Toxicol Chem; 2008 Mar; 27(3):676-81. PubMed ID: 17967067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aquatic impact of ionic liquids on freshwater organisms.
    Costa SP; Pinto PC; Saraiva ML; Rocha FR; Santos JR; Monteiro RT
    Chemosphere; 2015 Nov; 139():288-94. PubMed ID: 26151376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids.
    Wang Z; Zhang F; Wang S; Peijnenburg WJGM
    Chemosphere; 2017 Oct; 185():681-689. PubMed ID: 28728125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus.
    Das RN; Roy K; Popelier PL
    Ecotoxicol Environ Saf; 2015 Dec; 122():497-520. PubMed ID: 26414597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of critical body residue data for acute narcosis in aquatic organisms.
    McCarty LS; Arnot JA; Mackay D
    Environ Toxicol Chem; 2013 Oct; 32(10):2301-14. PubMed ID: 23720389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids.
    Peric B; Sierra J; Martí E; Cruañas R; Garau MA
    Ecotoxicol Environ Saf; 2015 May; 115():257-62. PubMed ID: 25728357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels.
    Droge STJ; Hodges G; Bonnell M; Gutsell S; Roberts J; Teixeira A; Barrett EL
    Environ Sci Process Impacts; 2023 Mar; 25(3):621-647. PubMed ID: 36779707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria.
    Ventura SP; e Silva FA; Gonçalves AM; Pereira JL; Gonçalves F; Coutinho JA
    Ecotoxicol Environ Saf; 2014 Apr; 102():48-54. PubMed ID: 24580821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: Correlation with structure and composition.
    Montalbán MG; Hidalgo JM; Collado-González M; Díaz Baños FG; Víllora G
    Chemosphere; 2016 Jul; 155():405-414. PubMed ID: 27139120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the aquatic toxicity of ionic liquids by means of VolSurf in silico descriptors.
    Paternò A; Bocci G; Goracci L; Musumarra G; Scirè S
    SAR QSAR Environ Res; 2016; 27(1):1-15. PubMed ID: 26727707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris &Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR).
    Quraishi KS; Bustam MA; Krishnan S; Aminuddin NF; Azeezah N; Ghani NA; Uemura Y; Lévêque JM
    Chemosphere; 2017 Oct; 184():642-651. PubMed ID: 28624742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity.
    Roy K; Das RN; Popelier PL
    Environ Sci Pollut Res Int; 2015 May; 22(9):6634-41. PubMed ID: 25410313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational studies on organic reactivity in ionic liquids.
    Chiappe C; Pomelli CS
    Phys Chem Chem Phys; 2013 Jan; 15(2):412-23. PubMed ID: 23172075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting solvent-water partitioning of charged organic species using quantum-chemically estimated Abraham pp-LFER solute parameters.
    Davis CW; Di Toro DM
    Chemosphere; 2016 Dec; 164():634-642. PubMed ID: 27635646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of ionic liquids in environment and humans: an overview.
    Frade RF; Afonso CA
    Hum Exp Toxicol; 2010 Dec; 29(12):1038-54. PubMed ID: 20511289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baseline toxicity and ion-trapping models to describe the pH-dependence of bacterial toxicity of pharmaceuticals.
    Baumer A; Bittermann K; Klüver N; Escher BI
    Environ Sci Process Impacts; 2017 Jul; 19(7):901-916. PubMed ID: 28574566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-QSAR predictions for bovine serum albumin-water partition coefficients of organic anions using quantum mechanically based descriptors.
    Linden L; Goss KU; Endo S
    Environ Sci Process Impacts; 2017 Mar; 19(3):261-269. PubMed ID: 28009898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.