These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 2855420)

  • 21. Effect of superoxide dismutase on the autoxidation of hydroquinones formed during DT-diaphorase catalysis and glutathione nucleophilic addition.
    Cadenas E; Ernster L
    Adv Exp Med Biol; 1990; 264():37-44. PubMed ID: 2244516
    [No Abstract]   [Full Text] [Related]  

  • 22. Multiple actions of superoxide dismutase: why can it both inhibit and stimulate reduction of oxygen by hydroquinones?
    Bandy B; Moon J; Davison AJ
    Free Radic Biol Med; 1990; 9(2):143-8. PubMed ID: 2227529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii.
    Guillén F; Muñoz C; Gómez-Toribio V; Martínez AT; Jesús Martínez M
    Appl Environ Microbiol; 2000 Jan; 66(1):170-5. PubMed ID: 10618219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of superoxide dismutase on the autoxidation of 1,4-hydroquinone.
    Eyer P
    Chem Biol Interact; 1991; 80(2):159-76. PubMed ID: 1934147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism.
    Cadenas E
    Biochem Pharmacol; 1995 Jan; 49(2):127-40. PubMed ID: 7530954
    [No Abstract]   [Full Text] [Related]  

  • 28. Concerted action of DT-diaphorase and superoxide dismutase in preventing redox cycling of naphthoquinones: an evaluation.
    Munday R
    Free Radic Res; 2001 Aug; 35(2):145-58. PubMed ID: 11697195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of ascorbate on the DT-diaphorase-mediated redox cycling of 2-methyl-1,4-naphthoquinone.
    Jarabak R; Jarabak J
    Arch Biochem Biophys; 1995 Apr; 318(2):418-23. PubMed ID: 7733672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Redox-Based Superoxide Generation System Using Quinone/Quinone Reductase.
    Singh SK; Husain SM
    Chembiochem; 2018 Aug; 19(15):1657-1663. PubMed ID: 29790650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones.
    Joseph P; Jaiswal AK
    Br J Cancer; 1998 Mar; 77(5):709-19. PubMed ID: 9514048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Oxidation of 4-anilino-5-methoxydioxybenzene-1,2 in complex biochemical systems possessing superoxide dismutase activity].
    Titovets EP
    Biokhimiia; 1979 Aug; 44(8):1506-11. PubMed ID: 227487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reductive metabolism of diaziquone (AZQ) in the S9 fraction of MCF-7 cells: free radical formation and NAD(P)H: quinone-acceptor oxidoreductase (DT-diaphorase) activity.
    Fisher GR; Gutierrez PL
    Free Radic Biol Med; 1991; 10(6):359-70. PubMed ID: 1654286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reductive addition of glutathione to p-benzoquinone, 2-hydroxy-p-benzoquinone, and p-benzoquinone epoxides. Effect of the hydroxy- and glutathionyl substituents on p-benzohydroquinone autoxidation.
    Brunmark A; Cadenas E
    Chem Biol Interact; 1988; 68(3-4):273-98. PubMed ID: 3214888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DT-diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation.
    Lind C; Hochstein P; Ernster L
    Arch Biochem Biophys; 1982 Jun; 216(1):178-85. PubMed ID: 6285828
    [No Abstract]   [Full Text] [Related]  

  • 37. Autoxidation of naphthohydroquinones: effects of metals, chelating agents, and superoxide dismutase.
    Munday R
    Free Radic Biol Med; 1997; 22(4):689-95. PubMed ID: 9013131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DT-diaphorase. Redox potential, steady-state, and rapid reaction studies.
    Tedeschi G; Chen S; Massey V
    J Biol Chem; 1995 Jan; 270(3):1198-204. PubMed ID: 7836380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.
    Yuan X; Miller CJ; Pham AN; Waite TD
    Free Radic Biol Med; 2014 Jun; 71():291-302. PubMed ID: 24681336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Naphthoquinone-dependent generation of superoxide radicals by quinone reductase isolated from the plasma membrane of soybean.
    Schopfer P; Heyno E; Drepper F; Krieger-Liszkay A
    Plant Physiol; 2008 Jun; 147(2):864-78. PubMed ID: 18408044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.