These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 2855420)
81. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions. Jiang C; Garg S; Waite TD Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728 [TBL] [Abstract][Full Text] [Related]
82. Reduction of 7-alkoxyresorufins by NADPH-cytochrome P450 reductase and its differential effects on their O-dealkylation by rat liver microsomal cytochrome P450. Dutton DR; Parkinson A Arch Biochem Biophys; 1989 Feb; 268(2):617-29. PubMed ID: 2536534 [TBL] [Abstract][Full Text] [Related]
83. The hydrolytic autoxidation of 1,4-naphthoquinone-2-potassium sulphonate: implications for 1,4-naphthoquinone-2-potassium sulphonate-induced oxidative stress in the red blood cell. Thornalley PJ; Stern A Chem Biol Interact; 1985 Dec; 56(1):55-71. PubMed ID: 3000635 [TBL] [Abstract][Full Text] [Related]
84. Modulation of 6-hydroxydopamine oxidation by various proteins. Padiglia A; Medda R; Lorrai A; Biggio G; Sanna E; Floris G Biochem Pharmacol; 1997 Apr; 53(8):1065-8. PubMed ID: 9175710 [TBL] [Abstract][Full Text] [Related]
85. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related]
86. Does lung NAD(P)H:quinone reductase (DT-diaphorase) play an antioxidant enzyme role in protection from hyperoxia? Whitney PL; Frank L Biochim Biophys Acta; 1993 Mar; 1156(3):275-82. PubMed ID: 8461317 [TBL] [Abstract][Full Text] [Related]
87. [Generation of superoxide anion radicals and hydrogen peroxide in the auto-oxidation of caffeic acid]. Aver'ianov AA Biokhimiia; 1981 Feb; 46(2):256-61. PubMed ID: 6264975 [TBL] [Abstract][Full Text] [Related]
88. NAD(P)H: quinone oxidoreductase (DT-diaphorase) in chick embryo liver. Comparison to activity in rat and guinea pig liver and differences in co-induction with 7-ethoxyresorufin deethylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Spencer CB; Rifkind AB Biochem Pharmacol; 1990 Jan; 39(2):327-35. PubMed ID: 2105732 [TBL] [Abstract][Full Text] [Related]
89. Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase. Scarpa M; Stevanato R; Viglino P; Rigo A J Biol Chem; 1983 Jun; 258(11):6695-7. PubMed ID: 6304051 [TBL] [Abstract][Full Text] [Related]
90. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone. Kettle AJ; Winterbourn CC J Biol Chem; 1992 Apr; 267(12):8319-24. PubMed ID: 1314822 [TBL] [Abstract][Full Text] [Related]
91. The cytotoxic effects of 5-OH-1,4-naphthoquinone and 5,8-diOH-1,4-naphthoquinone on doxorubicin-resistant human leukemia cells (HL-60). Segura-Aguilar J; Jönsson K; Tidefelt U; Paul C Leuk Res; 1992; 16(6-7):631-7. PubMed ID: 1635381 [TBL] [Abstract][Full Text] [Related]
92. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH. Liochev SI; Fridovich I Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540 [TBL] [Abstract][Full Text] [Related]
93. The human dioxin-inducible NAD(P)H: quinone oxidoreductase cDNA-encoded protein expressed in COS-1 cells is identical to diaphorase 4. Shaw PM; Reiss A; Adesnik M; Nebert DW; Schembri J; Jaiswal AK Eur J Biochem; 1991 Jan; 195(1):171-6. PubMed ID: 1899380 [TBL] [Abstract][Full Text] [Related]
94. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287 [TBL] [Abstract][Full Text] [Related]
96. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. Thor H; Smith MT; Hartzell P; Bellomo G; Jewell SA; Orrenius S J Biol Chem; 1982 Oct; 257(20):12419-25. PubMed ID: 6181068 [TBL] [Abstract][Full Text] [Related]
97. Reactions of halogen-substituted aziridinylbenzoquinones with glutathione. Formation of diglutathionyl conjugates and semiquinones. Giulivi C; Forlin A; Bellin S; Cadenas E Chem Biol Interact; 1998 Jan; 108(3):137-54. PubMed ID: 9528686 [TBL] [Abstract][Full Text] [Related]
98. Cyanide insensitive iron superoxide dismutase in Euglena gracilis. Comparison of the reliabilities of different test systems for superoxide dismutases. Lengfelder E; Elstner EF Z Naturforsch C Biosci; 1979; 34C(5-6):374-80. PubMed ID: 223343 [TBL] [Abstract][Full Text] [Related]
99. A new direct method for determining superoxide dismutase activity by measuring hydrogen peroxide formation. Segura-Aguilar J Chem Biol Interact; 1993 Jan; 86(1):69-78. PubMed ID: 8381720 [TBL] [Abstract][Full Text] [Related]