BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2855434)

  • 1. Changes in the calcium current of rat heart ventricular myocytes during development.
    Cohen NM; Lederer WJ
    J Physiol; 1988 Dec; 406():115-46. PubMed ID: 2855434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium current in isolated neonatal rat ventricular myocytes.
    Cohen NM; Lederer WJ
    J Physiol; 1987 Oct; 391():169-91. PubMed ID: 2451004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple effects of caffeine on calcium current in rat ventricular myocytes.
    Zahradník I; Palade P
    Pflugers Arch; 1993 Jul; 424(2):129-36. PubMed ID: 7692383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca current facilitation during postrest recovery depends on Ca entry.
    Hryshko LV; Bers DM
    Am J Physiol; 1990 Sep; 259(3 Pt 2):H951-61. PubMed ID: 2168683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of L-type Ca2+ current by fast and slow Ca2+ buffering in guinea pig ventricular cardiomyocytes.
    You Y; Pelzer DJ; Pelzer S
    Biophys J; 1997 Jan; 72(1):175-87. PubMed ID: 8994602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid regulation of the 'second inward current' by intracellular calcium in isolated rat and ferret ventricular myocytes.
    Boyett MR; Kirby MS; Orchard CH
    J Physiol; 1988 Dec; 407():77-102. PubMed ID: 2855743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transient K+ current in rat ventricular myocytes: evaluation of its Ca2+ and Na+ dependence.
    Dukes ID; Morad M
    J Physiol; 1991 Apr; 435():395-420. PubMed ID: 1770442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.
    Hiraoka M; Kawano S
    J Physiol; 1989 Mar; 410():187-212. PubMed ID: 2552080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genistein elicits biphasic effects on L-type Ca2+ current in feline atrial myocytes.
    Wang YG; Lipsius SL
    Am J Physiol; 1998 Jul; 275(1):H204-12. PubMed ID: 9688915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes.
    Adachi-Akahane S; Cleemann L; Morad M
    J Gen Physiol; 1996 Nov; 108(5):435-54. PubMed ID: 8923268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine releases calcium from sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes.
    Hansford RG; Lakatta EG
    J Physiol; 1987 Sep; 390():453-67. PubMed ID: 3127576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic basis of ryanodine's negative chronotropic effect on pacemaker cells isolated from the sinoatrial node.
    Li J; Qu J; Nathan RD
    Am J Physiol; 1997 Nov; 273(5):H2481-9. PubMed ID: 9374788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of caffeine and ryanodine on depression of post-rest tension development produced by Bay K 8644 in canine ventricular muscle.
    Bouchard RA; Hryshko LV; Saha JK; Bose D
    Br J Pharmacol; 1989 Aug; 97(4):1279-91. PubMed ID: 2477106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
    Goldhaber JI; Xie LH; Duong T; Motter C; Khuu K; Weiss JN
    Circ Res; 2005 Mar; 96(4):459-66. PubMed ID: 15662034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad.
    Lamb GD; Stephenson DG
    J Physiol; 1990 Apr; 423():519-42. PubMed ID: 2167367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible functional linkage between the cardiac dihydropyridine and ryanodine receptor: acceleration of rest decay by Bay K 8644.
    McCall E; Hryshko LV; Stiffel VM; Christensen DM; Bers DM
    J Mol Cell Cardiol; 1996 Jan; 28(1):79-93. PubMed ID: 8745216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current.
    Lipp P; Pott L
    J Physiol; 1988 Mar; 397():601-30. PubMed ID: 2457703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thapsigargin in normal and pretreated with ryanodine guinea pig cardiomyocytes.
    Lewartowski B; Rózycka M; Janiak R
    Am J Physiol; 1994 May; 266(5 Pt 2):H1829-39. PubMed ID: 8203582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices.
    Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL
    J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of calcium current in bull-frog atrial myocytes.
    Campbell DL; Giles WR; Hume JR; Shibata EF
    J Physiol; 1988 Sep; 403():287-315. PubMed ID: 2855343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.