BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 28554379)

  • 1. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates.
    Malgas S; Thoresen M; van Dyk JS; Pletschke BI
    Enzyme Microb Technol; 2017 Aug; 103():1-11. PubMed ID: 28554379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy.
    Van Dyk JS; Pletschke BI
    Biotechnol Adv; 2012; 30(6):1458-80. PubMed ID: 22445788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production.
    Bhattacharya AS; Bhattacharya A; Pletschke BI
    Biotechnol Lett; 2015 Jun; 37(6):1117-29. PubMed ID: 25656474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review.
    Li M; Jiang B; Wu W; Wu S; Yang Y; Song J; Ahmad M; Jin Y
    Int J Biol Macromol; 2022 Jan; 195():274-286. PubMed ID: 34883164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii.
    Xie C; Yan L; Gong W; Zhu Z; Tan S; Chen D; Hu Z; Peng Y
    Cell Physiol Biochem; 2016; 39(4):1479-94. PubMed ID: 27607466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Cellulase-Hemicellulase Mixture Secreted by
    Zhang Y; Yang J; Luo L; Wang E; Wang R; Liu L; Liu J; Yuan H
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains.
    Sørensen A; Teller PJ; Lübeck PS; Ahring BK
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1058-70. PubMed ID: 21360092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery.
    Gurram RN; Menkhaus TJ
    Appl Biochem Biotechnol; 2014 Jul; 173(6):1319-35. PubMed ID: 24793195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An update on enzymatic cocktails for lignocellulose breakdown.
    Lopes AM; Ferreira Filho EX; Moreira LRS
    J Appl Microbiol; 2018 Sep; 125(3):632-645. PubMed ID: 29786939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
    Contreras F; Pramanik S; Rozhkova AM; Zorov IN; Korotkova O; Sinitsyn AP; Schwaneberg U; Davari MD
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The laccase-catalyzed modification of lignin for enzymatic hydrolysis.
    Moilanen U; Kellock M; Galkin S; Viikari L
    Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.
    Kim D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29389875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources.
    Vasić K; Knez Ž; Leitgeb M
    Molecules; 2021 Feb; 26(3):. PubMed ID: 33535536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era.
    Liu G; Qin Y; Li Z; Qu Y
    Biotechnol Adv; 2013 Nov; 31(6):962-75. PubMed ID: 23507038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass.
    Dos Santos AC; Ximenes E; Kim Y; Ladisch MR
    Trends Biotechnol; 2019 May; 37(5):518-531. PubMed ID: 30477739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.