These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28554381)

  • 1. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.
    Halalipour A; Duff MR; Howell EE; Reyes-De-Corcuera JI
    Enzyme Microb Technol; 2017 Aug; 103():18-24. PubMed ID: 28554381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification.
    Halalipour A; Duff MR; Howell EE; Reyes-De-Corcuera JI
    Biotechnol Bioeng; 2017 Mar; 114(3):516-525. PubMed ID: 27641970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic activity and stabilization of phenyl-modified glucose oxidase at high hydrostatic pressure.
    Halalipour A; Duff MR; Howell EE; Reyes-De-Corcuera JI
    Enzyme Microb Technol; 2020 Jun; 137():109538. PubMed ID: 32423674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased thermal stability of a glucose oxidase biosensor under high hydrostatic pressure.
    Yang D; Olstad HE; Reyes-De-Corcuera JI
    Enzyme Microb Technol; 2020 Mar; 134():109486. PubMed ID: 32044033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of galactose oxidase by high hydrostatic pressure: Insights on the role of cavities size.
    Kang MJ; Reyes-De-Corcuera JI
    Biotechnol Bioeng; 2024 Jul; 121(7):2057-2066. PubMed ID: 38650386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature and/or pressure on lactoperoxidase activity in bovine milk and acid whey.
    Ludikhuyze LR; Claeys WL; Hendrickx ME
    J Dairy Res; 2001 Nov; 68(4):625-37. PubMed ID: 11928959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of storage, heat, and homogenization upon xanthine oxidase activity of milk.
    Demott BJ; Praepanitchai OA
    J Dairy Sci; 1978 Feb; 61(2):164-7. PubMed ID: 641238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the thermal stability of inulin fructotransferase with high hydrostatic pressure.
    Li Y; Miao M; Liu M; Chen X; Jiang B; Feng B
    Int J Biol Macromol; 2015 Mar; 74():171-8. PubMed ID: 25542173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability of almond β-glucosidase during combined high pressure-thermal processing: a kinetic study.
    Terefe NS; Sheean P; Fernando S; Versteeg C
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2917-28. PubMed ID: 22644526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase inactivation by reagents that modify thiol groups.
    Green RC; O'Brien PJ
    Biochem J; 1967 Nov; 105(2):585-9. PubMed ID: 5626093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and high-pressure inactivation kinetics of polyphenol oxidase in Victoria grape must.
    Rapeanu G; Van Loey A; Smout C; Hendrickx M
    J Agric Food Chem; 2005 Apr; 53(8):2988-94. PubMed ID: 15826049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase.
    Rasoulzadeh F; Jabary HN; Naseri A; Rashidi MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Feb; 72(1):190-3. PubMed ID: 19028136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two factors affecting the heat stability of xanthine oxidase in extracts of mouse intestine.
    Arnold CJ; Lush IE
    Biochem Genet; 1975 Oct; 13(9-10):699-706. PubMed ID: 1203060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.
    Picart L; Thiebaud M; René M; Pierre Guiraud J; Cheftel JC; Dumay E
    J Dairy Res; 2006 Nov; 73(4):454-63. PubMed ID: 16834813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal inactivation of xanthine oxidase from Arthrobacter M3: mechanism and the corresponding thermostabilization strategy.
    Zhang Y; Xin Y; Yang H; Zhang L; Xia X; Tong Y; Chen Y; Wang W
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):719-25. PubMed ID: 23996280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high hydrostatic pressure on the microbiological, biochemical characteristics of white shrimp Litopenaeus vannamei.
    Li XX; Tian X; Li JR
    Food Sci Technol Int; 2016 Jun; 22(4):302-12. PubMed ID: 26199222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential stability of dimeric and monomeric cytochrome c oxidase exposed to elevated hydrostatic pressure.
    Stanicová J; Sedlák E; Musatov A; Robinson NC
    Biochemistry; 2007 Jun; 46(24):7146-52. PubMed ID: 17530783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure variation of enzymatic reaction rates: IV. Xanthine oxidase and superoxide dismutase.
    Morild E; Olmheim JE
    Physiol Chem Phys; 1981; 13(6):483-91. PubMed ID: 6287508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free and membrane-bound xanthine oxidase in bovine milk during cooling and heating.
    Bhavadasan MK; Ganguli NC
    J Dairy Sci; 1980 Mar; 63(3):362-7. PubMed ID: 6892820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activity and stability of xanthine oxidase in aqueous-organic mixtures.
    Rashidi MR; Soruraddin MH; Taherzadeh F; Jouyban A
    Biochemistry (Mosc); 2009 Jan; 74(1):97-101. PubMed ID: 19232056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.