BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28554689)

  • 1. High-biomass C
    Mullet JE
    Plant Sci; 2017 Aug; 261():10-17. PubMed ID: 28554689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.
    Slewinski TL
    J Exp Bot; 2012 Aug; 63(13):4647-70. PubMed ID: 22732107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against
    Mårtensson LM; Carlsson G; Prade T; Kørup K; Lærke PE; Jensen ES
    Plant Physiol Biochem; 2017 Apr; 113():1-5. PubMed ID: 28152389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of C4 grasses for cellulosic biofuel production.
    van der Weijde T; Alvim Kamei CL; Torres AF; Vermerris W; Dolstra O; Visser RG; Trindade LM
    Front Plant Sci; 2013; 4():107. PubMed ID: 23653628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks.
    Warnasooriya SN; Brutnell TP
    J Exp Bot; 2014 Jun; 65(11):2825-34. PubMed ID: 24868036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production.
    Yang J; Udvardi M
    J Exp Bot; 2018 Feb; 69(4):855-865. PubMed ID: 29444307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies and tools to improve crop productivity by targeting photosynthesis.
    Nuccio ML; Potter L; Stiegelmeyer SM; Curley J; Cohn J; Wittich PE; Tan X; Davis J; Ni J; Trullinger J; Hall R; Bate NJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yield responses of wild C
    Cunniff J; Jones G; Charles M; Osborne CP
    Glob Chang Biol; 2017 Jan; 23(1):380-393. PubMed ID: 27550721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses.
    Sage RF; de Melo Peixoto M; Friesen P; Deen B
    J Exp Bot; 2015 Jul; 66(14):4195-212. PubMed ID: 25873658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maize and sorghum: genetic resources for bioenergy grasses.
    Carpita NC; McCann MC
    Trends Plant Sci; 2008 Aug; 13(8):415-20. PubMed ID: 18650120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on biomass production from C4 grasses: yield and quality for end-use.
    Tubeileh A; Rennie TJ; Goss MJ
    Curr Opin Plant Biol; 2016 Jun; 31():172-80. PubMed ID: 27258573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epichloë grass endophytes in sustainable agriculture.
    Kauppinen M; Saikkonen K; Helander M; Pirttilä AM; Wäli PR
    Nat Plants; 2016 Feb; 2():15224. PubMed ID: 27249195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits.
    Rusinowski S; Krzyżak J; Sitko K; Kalaji HM; Jensen E; Pogrzeba M
    Environ Pollut; 2019 Jul; 250():300-311. PubMed ID: 31003142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
    Byrt CS; Grof CP; Furbank RT
    J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of biomass through lignin modification.
    Li X; Weng JK; Chapple C
    Plant J; 2008 May; 54(4):569-81. PubMed ID: 18476864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth-defence balance in grass biomass production: the role of jasmonates.
    Shyu C; Brutnell TP
    J Exp Bot; 2015 Jul; 66(14):4165-76. PubMed ID: 25711704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the Actual Functions of Awns in Grasses: From Yield Potential to Quality Traits.
    Ntakirutimana F; Xie W
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.