BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28555001)

  • 1. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.
    Nojima D; Ishizuka Y; Muto M; Ujiro A; Kodama F; Yoshino T; Maeda Y; Matsunaga T; Tanaka T
    Mar Drugs; 2017 May; 15(6):. PubMed ID: 28555001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.
    Muto M; Nojima D; Yue L; Kanehara H; Naruse H; Ujiro A; Yoshino T; Matsunaga T; Tanaka T
    J Biosci Bioeng; 2017 Mar; 123(3):314-318. PubMed ID: 27773605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome analysis and genetic transformation of a water surface-floating microalga Chlorococcum sp. FFG039.
    Maeda Y; Nojima D; Sakurai M; Nomaguchi T; Ichikawa M; Ishizuka Y; Tanaka T
    Sci Rep; 2019 Aug; 9(1):11200. PubMed ID: 31371830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation.
    Zhang Y; He M; Zou S; Fei C; Yan Y; Zheng S; Rajper AA; Wang C
    Bioresour Technol; 2016 May; 207():268-75. PubMed ID: 26894567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp.
    Tanadul OU; Noochanong W; Jirakranwong P; Chanprame S
    Bioprocess Biosyst Eng; 2018 May; 41(5):613-619. PubMed ID: 29350295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and biochemical composition of filamentous microalgae Tribonema sp. as potential biofuel feedstock.
    Wang H; Ji B; Wang J; Guo F; Zhou W; Gao L; Liu TZ
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2607-13. PubMed ID: 24972785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation.
    Ummalyma SB; Mathew AK; Pandey A; Sukumaran RK
    Bioresour Technol; 2016 Aug; 213():216-221. PubMed ID: 27036330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production.
    Sathish A; Marlar T; Sims RC
    Bioresour Technol; 2015 Oct; 193():15-24. PubMed ID: 26115528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production.
    Zhou W; Li Y; Min M; Hu B; Chen P; Ruan R
    Bioresour Technol; 2011 Jul; 102(13):6909-19. PubMed ID: 21546246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods of downstream processing for the production of biodiesel from microalgae.
    Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW
    Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp.
    Harwati TU; Willke T; Vorlop KD
    Bioresour Technol; 2012 Oct; 121():54-60. PubMed ID: 22858468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis.
    Zhang C; Li Q; Fu L; Zhou D; Crittenden JC
    Bioresour Technol; 2018 Sep; 263():576-582. PubMed ID: 29783193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a novel marine unicellular alga, Pseudoneochloris sp. strain NKY372003 as a high carbohydrate producer.
    Aketo T; Hashizume R; Yabu Y; Hoshikawa Y; Nojima D; Maeda Y; Yoshino T; Takano H; Tanaka T
    J Biosci Bioeng; 2020 Jun; 129(6):687-692. PubMed ID: 31937470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes.
    Misra R; Guldhe A; Singh P; Rawat I; Stenström TA; Bux F
    Bioresour Technol; 2015 Jan; 176():1-7. PubMed ID: 25460977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
    Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China.
    Xia L; Song S; He Q; Yang H; Hu C
    Bioresour Technol; 2014 Dec; 174():274-80. PubMed ID: 25463808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.