These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28555029)

  • 21. Peptide fingerprinting of snake venoms by direct infusion nano-electrospray ionization mass spectrometry: potential use in venom identification and taxonomy.
    Souza GH; Catharino RR; Ifa DR; Eberlin MN; Hyslop S
    J Mass Spectrom; 2008 May; 43(5):594-9. PubMed ID: 18200607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes.
    Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM
    Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation.
    Calvete JJ
    Expert Rev Proteomics; 2014 Jun; 11(3):315-29. PubMed ID: 24678852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny.
    Olamendi-Portugal T; Batista CV; Restano-Cassulini R; Pando V; Villa-Hernandez O; Zavaleta-Martínez-Vargas A; Salas-Arruz MC; Rodríguez de la Vega RC; Becerril B; Possani LD
    Proteomics; 2008 May; 8(9):1919-32. PubMed ID: 18384102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).
    Pla D; Sanz L; Sasa M; Acevedo ME; Dwyer Q; Durban J; Pérez A; Rodriguez Y; Lomonte B; Calvete JJ
    J Proteomics; 2017 Jan; 152():1-12. PubMed ID: 27777178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A perspective view of top-down proteomics in snake venom research.
    Ghezellou P; Garikapati V; Kazemi SM; Strupat K; Ghassempour A; Spengler B
    Rapid Commun Mass Spectrom; 2019 May; 33 Suppl 1():20-27. PubMed ID: 30076652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of venom composition and biological activities of the subspecies Crotalus lepidus lepidus, Crotalus lepidus klauberi and Crotalus lepidus morulus from Mexico.
    Martínez-Romero G; Rucavado A; Lazcano D; Gutiérrez JM; Borja M; Lomonte B; Garza-García Y; Zugasti-Cruz A
    Toxicon; 2013 Sep; 71():84-95. PubMed ID: 23732126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fractionation and proteomic analysis of the Walterinnesia aegyptia snake venom using OFFGEL and MALDI-TOF-MS techniques.
    Abd El Aziz TM; Bourgoin-Voillard S; Combemale S; Beroud R; Fadl M; Seve M; De Waard M
    Electrophoresis; 2015 Oct; 36(20):2594-605. PubMed ID: 26178575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys.
    Li S; Wang J; Zhang X; Ren Y; Wang N; Zhao K; Chen X; Zhao C; Li X; Shao J; Yin J; West MB; Xu N; Liu S
    Biochem J; 2004 Nov; 384(Pt 1):119-27. PubMed ID: 15285721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.
    Sunagar K; Morgenstern D; Reitzel AM; Moran Y
    J Proteomics; 2016 Mar; 135():62-72. PubMed ID: 26385003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis: Dipsadidae).
    Weldon CL; Mackessy SP
    Toxicon; 2010; 55(2-3):558-69. PubMed ID: 19835906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospray ionization mass spectrometry as a critical tool for revealing new properties of snake venom phospholipase A2.
    Liu S; Zhang C; Xu YF; Yang F; Sun MZ
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1158-66. PubMed ID: 19283785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents.
    Modahl CM; Brahma RK; Koh CY; Shioi N; Kini RM
    Annu Rev Anim Biosci; 2020 Feb; 8():91-116. PubMed ID: 31702940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Venoms, venomics, antivenomics.
    Calvete JJ; Sanz L; Angulo Y; Lomonte B; Gutiérrez JM
    FEBS Lett; 2009 Jun; 583(11):1736-43. PubMed ID: 19303875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling snake venom complexity with 'omics' approaches: challenges and perspectives.
    Zelanis A; Tashima AK
    Toxicon; 2014 Sep; 87():131-4. PubMed ID: 24878375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibodies to a fragment of the Bothrops moojenil-amino acid oxidase cross-react with snake venom components unrelated to the parent protein.
    Stábeli RG; Magalhães LM; Selistre-de-Araujo HS; Oliveira EB
    Toxicon; 2005 Sep; 46(3):308-17. PubMed ID: 16026810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom.
    Mendonça-Franqueiro Ede P; Alves-Paiva Rde M; Sartim MA; Callejon DR; Paiva HH; Antonucci GA; Rosa JC; Cintra AC; Franco JJ; Arantes EC; Dias-Baruffi M; Sampaio SV
    Acta Biochim Biophys Sin (Shanghai); 2011 Mar; 43(3):181-92. PubMed ID: 21297119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data.
    Valente RH; Guimarães PR; Junqueira M; Neves-Ferreira AG; Soares MR; Chapeaurouge A; Trugilho MR; León IR; Rocha SL; Oliveira-Carvalho AL; Wermelinger LS; Dutra DL; Leão LI; Junqueira-de-Azevedo IL; Ho PL; Zingali RB; Perales J; Domont GB
    J Proteomics; 2009 Mar; 72(2):241-55. PubMed ID: 19211044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.
    Gonçalves-Machado L; Pla D; Sanz L; Jorge RJB; Leitão-De-Araújo M; Alves MLM; Alvares DJ; De Miranda J; Nowatzki J; de Morais-Zani K; Fernandes W; Tanaka-Azevedo AM; Fernández J; Zingali RB; Gutiérrez JM; Corrêa-Netto C; Calvete JJ
    J Proteomics; 2016 Mar; 135():73-89. PubMed ID: 25968638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.