These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28555132)
1. Stimulation of Fengycin-Type Antifungal Lipopeptides in Zihalirwa Kulimushi P; Argüelles Arias A; Franzil L; Steels S; Ongena M Front Microbiol; 2017; 8():850. PubMed ID: 28555132 [TBL] [Abstract][Full Text] [Related]
2. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
3. Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici. Kang BR; Park JS; Jung WJ Microb Pathog; 2020 Dec; 149():104509. PubMed ID: 32956793 [TBL] [Abstract][Full Text] [Related]
4. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5. DeFilippi S; Groulx E; Megalla M; Mohamed R; Avis TJ J Chem Ecol; 2018 Apr; 44(4):374-383. PubMed ID: 29492723 [TBL] [Abstract][Full Text] [Related]
5. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Zhang L; Sun C Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu. Kulimushi PZ; Basime GC; Nachigera GM; Thonart P; Ongena M Environ Sci Pollut Res Int; 2018 Oct; 25(30):29808-29821. PubMed ID: 28600796 [TBL] [Abstract][Full Text] [Related]
7. Jiao R; Cai Y; He P; Munir S; Li X; Wu Y; Wang J; Xia M; He P; Wang G; Yang H; Karunarathna SC; Xie Y; He Y Front Cell Infect Microbiol; 2021; 11():598999. PubMed ID: 34222035 [No Abstract] [Full Text] [Related]
8. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Cawoy H; Debois D; Franzil L; De Pauw E; Thonart P; Ongena M Microb Biotechnol; 2015 Mar; 8(2):281-95. PubMed ID: 25529983 [TBL] [Abstract][Full Text] [Related]
9. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Asari S; Ongena M; Debois D; De Pauw E; Chen K; Bejai S; Meijer J Ann Bot; 2017 Oct; 120(4):551-562. PubMed ID: 28961818 [TBL] [Abstract][Full Text] [Related]
10. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. Liu J; Zhou T; He D; Li XZ; Wu H; Liu W; Gao X J Mol Microbiol Biotechnol; 2011; 20(1):43-52. PubMed ID: 21335978 [TBL] [Abstract][Full Text] [Related]
11. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). Pathak KV; Keharia H J Appl Microbiol; 2013 May; 114(5):1300-10. PubMed ID: 23387377 [TBL] [Abstract][Full Text] [Related]
12. Fengycins From Medeot DB; Fernandez M; Morales GM; Jofré E Front Microbiol; 2019; 10():3107. PubMed ID: 32038550 [No Abstract] [Full Text] [Related]
13. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Ding L; Guo W; Chen X Appl Microbiol Biotechnol; 2019 Jul; 103(13):5367-5377. PubMed ID: 31053917 [TBL] [Abstract][Full Text] [Related]
14. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. Hazarika DJ; Goswami G; Gautom T; Parveen A; Das P; Barooah M; Boro RC BMC Microbiol; 2019 Apr; 19(1):71. PubMed ID: 30940070 [TBL] [Abstract][Full Text] [Related]
15. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Gond SK; Bergen MS; Torres MS; White JF Microbiol Res; 2015 Mar; 172():79-87. PubMed ID: 25497916 [TBL] [Abstract][Full Text] [Related]
16. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria. Mora I; Cabrefiga J; Montesinos E PLoS One; 2015; 10(5):e0127738. PubMed ID: 26024374 [TBL] [Abstract][Full Text] [Related]
17. Biological control of plant pathogens by Bacillus species. Fira D; Dimkić I; Berić T; Lozo J; Stanković S J Biotechnol; 2018 Nov; 285():44-55. PubMed ID: 30172784 [TBL] [Abstract][Full Text] [Related]
18. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Arrebola E; Jacobs R; Korsten L J Appl Microbiol; 2010 Feb; 108(2):386-95. PubMed ID: 19674188 [TBL] [Abstract][Full Text] [Related]
19. Isolation and Characterization of Fengycins Produced by Lin LZ; Zheng QW; Wei T; Zhang ZQ; Zhao CF; Zhong H; Xu QY; Lin JF; Guo LQ Front Microbiol; 2020; 11():579621. PubMed ID: 33391199 [TBL] [Abstract][Full Text] [Related]
20. Co-culture of Bacillus amyloliquefaciens and recombinant Pichia pastoris for utilizing kitchen waste to produce fengycins. Wang XF; Miao CH; Qiao B; Xu SJ; Cheng JS J Biosci Bioeng; 2022 Jun; 133(6):560-566. PubMed ID: 35314117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]