These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28555214)

  • 1. The maximum penalty criterion for ridge regression: application to the calibration of the force constant in elastic network models.
    Dehouck Y; Bastolla U
    Integr Biol (Camb); 2017 Jul; 9(7):627-641. PubMed ID: 28555214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical evaluation of simple network models of protein dynamics and their comparison with crystallographic B-factors.
    Soheilifard R; Makarov DE; Rodin GJ
    Phys Biol; 2008 Jun; 5(2):026008. PubMed ID: 18577808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of rigid motions on elastic network model force constants.
    Lezon TR
    Proteins; 2012 Apr; 80(4):1133-42. PubMed ID: 22228562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion.
    Budday D; Leyendecker S; van den Bedem H
    J Chem Inf Model; 2018 Oct; 58(10):2108-2122. PubMed ID: 30240209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced elastic network model to represent the motions of domain-swapped proteins.
    Song G; Jernigan RL
    Proteins; 2006 Apr; 63(1):197-209. PubMed ID: 16447281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal modeling of atomic fluctuations in protein crystal structures for weak crystal contact interactions.
    Hafner J; Zheng W
    J Chem Phys; 2010 Jan; 132(1):014111. PubMed ID: 20078153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Maximum-Likelihood Approach to Force-Field Calibration.
    Zaborowski B; Jagieła D; Czaplewski C; Hałabis A; Lewandowska A; Żmudzińska W; Ołdziej S; Karczyńska A; Omieczynski C; Wirecki T; Liwo A
    J Chem Inf Model; 2015 Sep; 55(9):2050-70. PubMed ID: 26263302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic fluctuations of amino acids in protein structures: insights from X-ray crystallography and elastic network models.
    Eyal E; Chennubhotla C; Yang LW; Bahar I
    Bioinformatics; 2007 Jul; 23(13):i175-84. PubMed ID: 17646294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust elastic network model: A general modeling for precise understanding of protein dynamics.
    Kim MH; Lee BH; Kim MK
    J Struct Biol; 2015 Jun; 190(3):338-47. PubMed ID: 25891099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. vGNM: a better model for understanding the dynamics of proteins in crystals.
    Song G; Jernigan RL
    J Mol Biol; 2007 Jun; 369(3):880-93. PubMed ID: 17451743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Timer and Sizer of Biomacromolecular Motions.
    Chan J; Takemura K; Lin HR; Chang KC; Chang YY; Joti Y; Kitao A; Yang LW
    Structure; 2020 Feb; 28(2):259-269.e8. PubMed ID: 31780433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensorial elastic network model for protein dynamics: integration of the anisotropic network model with bond-bending and twist elasticities.
    Srivastava A; Halevi RB; Veksler A; Granek R
    Proteins; 2012 Dec; 80(12):2692-700. PubMed ID: 22847894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A better prediction of conformational changes of proteins using minimally connected network models.
    Toussi CA; Soheilifard R
    Phys Biol; 2017 Jan; 13(6):066013. PubMed ID: 28112101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential.
    Bahar I; Atilgan AR; Erman B
    Fold Des; 1997; 2(3):173-81. PubMed ID: 9218955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive penalties for generalized Tikhonov regularization in statistical regression models with application to spectroscopy data.
    Randolph TW; Ding J; Kundu MG; Harezlak J
    J Chemom; 2017 Apr; 31(4):. PubMed ID: 30369716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal protein dynamics shifts the distance to the mechanical transition state.
    West DK; Paci E; Olmsted PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061912. PubMed ID: 17280101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.