These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28555221)

  • 21. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spin-orbit coupling effects on electronic structures in stanene nanoribbons.
    Xiong W; Xia C; Peng Y; Du J; Wang T; Zhang J; Jia Y
    Phys Chem Chem Phys; 2016 Mar; 18(9):6534-40. PubMed ID: 26865500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX
    Liu S; Liu Z
    Phys Chem Chem Phys; 2018 Aug; 20(33):21441-21446. PubMed ID: 30087962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetism and perfect spin filtering in pristine MgCl
    Vasconcelos R; Paura ENC; Machado de Macedo LG; Gargano R
    Phys Chem Chem Phys; 2022 Feb; 24(5):3370-3378. PubMed ID: 35067691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2020 Jan; 10(3):1400-1409. PubMed ID: 35494722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.
    Lou P
    Phys Chem Chem Phys; 2011 Oct; 13(38):17194-204. PubMed ID: 21879055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the Electronic and Magnetic Properties of Graphene Flake Embedded in Boron Nitride Nanoribbons with Transverse Electric Fields: First-Principles Calculations.
    Guan Z; Ni S; Hu S
    ACS Omega; 2019 Jun; 4(6):10293-10300. PubMed ID: 31460121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.
    Li Y; Zhou Z; Zhang S; Chen Z
    J Am Chem Soc; 2008 Dec; 130(49):16739-44. PubMed ID: 19554733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic Band Gap Tuning and Calculations of Mechanical Strength and Deformation Potential by Applying Uniaxial Strain on MX
    Devi A; Kumar N; Thakur A; Kumar A; Singh A; Ahluwalia PK
    ACS Omega; 2022 Nov; 7(44):40054-40066. PubMed ID: 36385828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and magnetic properties of boron nitride nanoribbons with square-octagon (4 | 8) line defects.
    Han Y; Li R; Zhou J; Dong J; Kawazoe Y
    Nanotechnology; 2014 Mar; 25(11):115702. PubMed ID: 24556819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Freestanding χ
    Izadi Vishkayi S; Bagheri Tagani M
    Phys Chem Chem Phys; 2018 Apr; 20(15):10493-10501. PubMed ID: 29617014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band.
    Du Y; Liu H; Xu B; Sheng L; Yin J; Duan CG; Wan X
    Sci Rep; 2015 Mar; 5():8921. PubMed ID: 25747727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introducing novel electronic and magnetic properties in C
    Bafekry A; Farjami Shayesteh S; Peeters FM
    Phys Chem Chem Phys; 2019 Oct; 21(37):21070-21083. PubMed ID: 31528958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulating Electronic Structures of Armchair GaN Nanoribbons by Chemical Functionalization under an Electric Field Effect.
    Alaal N; Roqan IS
    ACS Omega; 2020 Jan; 5(2):1261-1269. PubMed ID: 31984284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.