These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28555295)

  • 1. Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus.
    Wagschal KC; Rose Stoller J; Chan VJ; Jordan DB
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1503-1515. PubMed ID: 28555295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and Characterization of Hyperthermostable Exo-polygalacturonase TtGH28 from Thermotoga thermophilus.
    Wagschal K; Rose Stoller J; Chan VJ; Lee CC; Grigorescu AA; Jordan DB
    Mol Biotechnol; 2016 Jul; 58(7):509-19. PubMed ID: 27209035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus.
    Hobel CF; Hreggvidsson GO; Marteinsson VT; Bahrani-Mougeot F; Einarsson JM; Kristjánsson JK
    Extremophiles; 2005 Feb; 9(1):53-64. PubMed ID: 15583965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus.
    Jorge CD; Sampaio MM; Hreggvidsson GO; Kristjánson JK; Santos H
    Extremophiles; 2007 Jan; 11(1):115-22. PubMed ID: 16944251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of a thermostable cellobiose 2-epimerase from Rhodothermus marinus JCM9785 and continuous production of epilactose.
    Sato H; Saburi W; Ojima T; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(8):1584-7. PubMed ID: 22878201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities.
    Li X; Li D; Park KH
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5359-69. PubMed ID: 23001056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye-linked D-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-L-proline catabolism.
    Satomura T; Ishikura M; Koyanagi T; Sakuraba H; Ohshima T; Suye S
    Appl Microbiol Biotechnol; 2015 May; 99(10):4265-75. PubMed ID: 25472442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and characterization of an extremely thermophilic 1,4-α-glucan branching enzyme from Rhodothermus obamensis STB05.
    Wang Z; Xin C; Li C; Gu Z; Cheng L; Hong Y; Ban X; Li Z
    Protein Expr Purif; 2019 Dec; 164():105478. PubMed ID: 31421223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima.
    Kluskens LD; van Alebeek GJ; Walther J; Voragen AG; de Vos WM; van der Oost J
    FEBS J; 2005 Nov; 272(21):5464-73. PubMed ID: 16262687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary structure and characterization of an exopolygalacturonase from Aspergillus tubingensis.
    Kester HC; Kusters-van Someren MA; Müller Y; Visser J
    Eur J Biochem; 1996 Sep; 240(3):738-46. PubMed ID: 8856078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of a thermophilic cellobiose 2-epimerase from a thermohalophilic bacterium, Rhodothermus marinus JCM9785.
    Ojima T; Saburi W; Sato H; Yamamoto T; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2011; 75(11):2162-8. PubMed ID: 22056431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253.
    Ara KZG; Månberger A; Gabriško M; Linares-Pastén JA; Jasilionis A; Friðjónsson ÓH; Hreggviðsson GÓ; Janeček Š; Nordberg Karlsson E
    Sci Rep; 2020 Jan; 10(1):1329. PubMed ID: 31992772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The methylotrophic yeast Pichia pastoris as a host for the expression and production of thermostable xylanase from the bacterium Rhodothermus marinus.
    Ramchuran SO; Mateus B; Holst O; Karlsson EN
    FEMS Yeast Res; 2005 Jun; 5(9):839-50. PubMed ID: 15925312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of heterologous genes in Rhodothermus marinus.
    Bjornsdottir SH; Fridjonsson OH; Kristjansson JK; Eggertsson G
    Extremophiles; 2007 Mar; 11(2):283-93. PubMed ID: 17124556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans.
    Hamed MB; Karamanou S; Ólafsdottir S; Basílio JSM; Simoens K; Tsolis KC; Van Mellaert L; Guðmundsdóttir EE; Hreggvidsson GO; Anné J; Bernaerts K; Fridjonsson OH; Economou A
    Microb Cell Fact; 2017 Dec; 16(1):232. PubMed ID: 29274637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of a highly thermostable alpha-L-Arabinofuranosidase from Geobacillus caldoxylolyticus TK4.
    Canakci S; Belduz AO; Saha BC; Yasar A; Ayaz FA; Yayli N
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):813-20. PubMed ID: 17361432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermophilic alpha-L: -arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein.
    Miyazaki K
    Extremophiles; 2005 Oct; 9(5):399-406. PubMed ID: 15965714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations.
    Bleicher L; Prates ET; Gomes TC; Silveira RL; Nascimento AS; Rojas AL; Golubev A; Martínez L; Skaf MS; Polikarpov I
    J Phys Chem B; 2011 Jun; 115(24):7940-9. PubMed ID: 21619042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of the UDP-xylose biosynthesis pathway in Rhodothermus marinus.
    Duan XC; Lu AM; Gu B; Cai ZP; Ma HY; Wei S; Laborda P; Liu L; Voglmeir J
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9463-72. PubMed ID: 26033773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimerisation and an increase in active site aromatic groups as adaptations to high temperatures: X-ray solution scattering and substrate-bound crystal structures of Rhodothermus marinus endoglucanase Cel12A.
    Crennell SJ; Cook D; Minns A; Svergun D; Andersen RL; Nordberg Karlsson E
    J Mol Biol; 2006 Feb; 356(1):57-71. PubMed ID: 16343530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.